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In this paper, we propose an efficient architecture for a 
real-time image stitching engine for vision SoCs found in 
motor vehicles. To enlarge the obstacle-detection distance 
and area for safety, we adopt panoramic images from 
multiple telegraphic cameras. We propose a stitching 
method based on a fixed homography that is educed from 
the initial frame of a video sequence and is used to warp 
all input images without regeneration. Because the fixed 
homography is generated only once at the initial state, we 
can calculate it using SW to reduce HW costs. The 
proposed warping HW engine is based on a linear 
transform of the pixel positions of warped images and can 
reduce the computational complexity by 90% or more as 
compared to a conventional method. A dual-core SW/HW 
image stitching engine is applied to stitching input frames 
in parallel to improve the performance by 70% or more as 
compared to a single-core engine operation. In addition, a 
dual-core structure is used to detect a failure in state 
machines using rock-step logic to satisfy the ISO26262 
standard. The dual-core SW/HW image stitching engine is 
fabricated in SoC with 254,968 gate counts using Global 
Foundry’s 65 nm CMOS process. The single-core engine 
can make panoramic images from three YCbCr 4:2:0 
formatted VGA images at 44 frames per second and 
frequency of 200 MHz without an LCD display. 
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I. Introduction 

A panoramic image is a wide-view image synthesized with 
multiple consecutive images together on a common virtual 
planar surface, on a cylinder, or on a sphere, up to a full view of 
360 degrees. The feature points of overlapped regions between 
the images are first extracted and matched; a homography is 
then estimated and represented in terms of a transformation 
matrix. Then, the images are warped onto the panorama 
surface using the estimated homography matrix (H-matrix) 
between the panorama surface and image coordinates [1]–[2]. 
Panoramic images provide users with wide scenes that cannot 
be captured by a single image from a normal camera. Thus, 
panorama synthesis overcomes the limitations of viewing 
angles and resolutions in normal cameras [3]. Traditional 
panoramic images have a single viewpoint, known as the 
“center of projection” [4]–[6]. Panoramic images can be 
captured by panoramic cameras, using special mirrors [7]–[8], 
by mosaicing a sequence of images from a rotating camera 
[9]–[10], or by mosaicing together images from a rotating pair 
of stereo cameras [11]. 

Panorama image systems have been popular in mobile 
cameras and PC environments. Many algorithms and 
commercial systems for image stitching have been reported 
[12]–[16]. Early panorama systems assumed fixed-camera 
motions, such as horizontal rotations with fixed angles, using 
user-constrained interfaces. This simplified the calculations of a 
transformation matrix, but the degrees of freedom to handle 
panoramic images were restricted [14]. In panorama 
algorithms, feature matching and transformation estimation are 
the most important procedures since images are spatially 
warped from any resulting transformations. Brown and Lowe 
exploited a descriptor-based feature, SIFT, to match image 
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correspondences and estimate arbitrary camera motions 
automatically [17]. Descriptor-based features such as SIFT  
[18] and SURF [19] improve the performance of automatic 
panorama synthesis. However, since feature detection and 
automatic feature matching carry a high computational load, 
these approaches are not suitable for systems with low 
computing power [3]. 

According to the increased attention paid to the safety of 
motor vehicles, the developments of vision SoCs such as 
eyeQ1 [20] and eyeQ2 [21] for driving assistance have recently 
become more active than ever. Many driving assistance 
systems based on these vision SoCs have been developed and 
their performance verified using real vehicles on actual roads 
[22]. 

In this paper, we design an efficient software (SW)/hardware 
(HW) image stitching engine for motor vehicles that can make 
panoramic images to enlarge the obstacle-detection distance 
and area for safety in real time with a small HW area. The 
remainder of this paper is organized as follows. The 
architecture of the proposed SW/HW image stitching engine is 
shown in Section II. Section III describes the SW algorithms to 
generate a fixed H-matrix. Section IV describes the efficient 
HW circuits used to calculate the warping algorithm and dual-
core structure used to process input frames in parallel and 
detect any failures. The experimental results and demonstration 
are shown in Section V. Finally, we provide some concluding 
remarks in Section VI. 

II. Proposed Architecture of Image Stitching Engine 

To make the image stitching engine more efficient, we 
propose the following considerations. First, a telegraphic 
camera is superior to a pantoscopic one in recognizing objects 
at a distance. It provides much finer figures than a pantoscopic 
camera. Second, the H-matrix of the left and right images for 
image warping is not changed much because cameras are fixed 
to each other on the body frames of vehicles. Thus, the H- 
matrix is extracted only once from the initial frame of a video 
sequence. Third, an SW is suitable for calculating an H-matrix 
because one operation at the beginning of the system is 
sufficient when stitching all frames. Other processes such as 
warping and blending are computed using HW, except for H- 
matrix generation using SW. This can significantly reduce the 
HW area, such as the Gaussian function, gradient operation, 
keypoint descriptor, random sample consensus (RANSAC), 
and singular value decomposition (SVD). Fourth, we adopt a 
dual-core structure to detect a failure of the stitching engine  
to meet the ISO26262 standard and improve performance 
through parallel processing. 

 

Fig. 1. Comparison of pantoscopic and telegraphic cameras. 
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Fig. 2. Images from multiple telegraphic cameras. 
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1. Considerations for Motor Vehicle Cameras 

As shown in Fig. 1, a pantoscopic camera can take wider 
images than a telegraphic camera, while the latter gives much 
finer resolution than the former when the objects are at a 
distance. To avoid crashing with an object, a telegraphic 
camera would be better than a pantoscopic camera, as shown 
in Fig. 1. On the other hand, objects across the road from the 
edge of a sidewalk, such as (M) in Fig. 1, cannot be detected 
using a telegraphic camera. Although high-resolution images 
can be used to observe an object at a distance in a wide area, 
we adopt multiple cameras to lower the aspect ratio of the 
observation area, as shown in Fig. 2. The man standing on the 
road in Fig. 2 spans the border of both images (b) and (c). 
While it is hard to detect these two half-bodies in each figure 
through vision-based object detection, the miss rate of the full 
body can be significantly decreased if they are unified through 
image stitching. To enhance the detection performance, an 
image stitching function is needed [23]. 
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2. Fixed-Homography Method for Warping Images 

An H-matrix is extracted only once from the initial frame of 
a video sequence and is used to warp all input images without 
regeneration. This is reasonable since a vehicle’s cameras are 
all fixed and their respective H-matrices are not changed much. 
There is, therefore, no reason to update each H-matrix at every 
frame. Actually, a blurring of the stitched images between 
frames occurs when using a H-matrix generated from every 
frame to warp the input images because a given H-matrix is 
selected randomly by the RANSAC algorithm with some 
unevenness for the same image. In addition, this is bad for both 
recognition accuracy and viewing stitched images. Using a 
fixed H-matrix, we can obtain three advantages — a decrease 
in the computational complexity for extracting the H-matrix at 
every frame, comfortable viewing images without blurring, 
and a removal of mismatch errors in the pixel position between 
frames for object recognition. 

An H-matrix can also make only an affine transformation 
[24]–[25]. To reduce the HW complexity, the warping process 
using an H-matrix can be implemented using only linear 
operations, described in Section V. 

3. SW/HW Co-design Architecture 

We designed the image stitching engine as shown in Fig. 3. 
The SW engine is based on a 32-bit EISC microprocessor 
(MP) [26]. The HW engine consists of a warping module, 
blending module, and stitching controller. The warping module 
warps each image according to the H-matrix generated by the 
EISC processor. The blending module performs alpha blending, 
and the stitching controller controls all other modules. For 
efficient communications with the vision SoCs, the proposed 
engine supports an AXI interface. Control parameters such as 
the memory addresses used; the image size and format; and the 
blending area are set by the MP through the device driver. The 
proposed engine operates using a double-buffer which provide 

 

 

Fig. 3. SW/HW block diagram of image stitching engine. 
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some marginal cycles for a frame since we assume a full-
matrix AXI BUS structure [23]. 

4. Dual-Core Structure for ISO26262 Standard and 
Performance Improvement 

A standard for the functional safety of road vehicles, 
ISO26262, was recently published [27]. We adopted lockstep 
blocks to detect a failure of the image stitching engine and dual-
core structure to fulfill the requirements of this functional safety 
standard. When one of the engines belonging to the dual-core 
structure is out of order, only the other engine will operate 
normally instead of parallel processing. We can, therefore, obtain 
improvements in terms of functional safety and performance. 

III. SW Algorithm Used to Generate Homography 
Matrix 

1. Feature Extraction 

We first extract the feature points of input images through 
use of the SIFT algorithm. The major stages of the algorithm 
are as follows [18]: 
1) Scale-space extrema detection: the first stage of extrema 

detection searches over all scales and image locations using 
a difference-of-Gaussian function to identify potential 
interest points that are invariant to scale and orientation. 

2) Keypoint localization: at each candidate location of the 
extremas, a detailed model based on the measures of their 
stability is used to select keypoints and to determine their 
location and scale. 

3) Orientation assignment: one or more orientations are 
assigned to each keypoint location based on local image 
gradient directions. All future operations are performed on 
image data that have been transformed relative to the 
assigned orientation, scale, and location for each feature, 
thereby providing invariance to these transformations. 

4) Keypoint descriptor: the local image gradients are measured 
at a selected scale in the region around each keypoint. 

2. Correspondence Matching 

We need to match the detected features using SIFT for all 
candidate features to find the best correspondences between 
stereo images from the left and right cameras [28]. Feature 
matching has been a bottleneck for real-time operation in 
feature-based methods [3]. Moreover, robust feature matching 
is required because the matching errors corrupt the H-matrix. 
The correspondence matching time is not effective for real-
time processing, because a fixed H-matrix is generated only 
once. We heighten the matching accuracy using a nearest- 
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Fig. 4. Correspondence matching result. 

191 features 121 features 49 correspondence pairs

(a) (b) 

 
 
neighbor algorithm for all candidate features. Figure 4 shows 
the results of correspondence matching from a 32-bit EISC 
processor after extracting the feature points for 320 × 240 
images. The number of left and right image feature points is 
191 and 121, respectively. Additionally, the number of 
correspondence matching pairs is 49.  

3. RANSAC and SVD 

We use an iterative RANSAC method to estimate the best 
H-matrix that has minimum transformation errors for a stitched 
image. The RANSAC algorithm was first introduced by 
Fischler and Bolles [29] in 1981 as a method to estimate the 
parameters of a certain model starting from a dataset 
contaminated by large numbers of outliers [30]. When we 
estimate the H-matrix from the correspondence matching pairs, 
some errors (outliers) exist. The outliers are the correspondence 
matching pairs that have more errors above a threshold value 
for determining when the pairs fit the estimated H-matrix. 

The major stages of RANSAC used to generate the H-matrix 
are as follows [30]: 
1) Hypothesize: first, minimal sample sets (MSSs) are 

randomly selected from the input dataset, and the model 
parameters are computed using only the elements of the 
MSSs. At least four pairs of correspondences are necessary 
to estimate the H-matrix. Thus, our MSSs are the four pairs 
of correspondences, and the model parameters make up the 
H-matrix. 

2) Test: in the second step, the RANSAC checks which 
elements of the entire dataset are consistent with the model 
instantiated with the parameters estimated in the first step. 
RANSAC terminates when the probability of finding a 
better ranked consensus set (CS) drops below a certain 
threshold. 

Let x({d1, … , dh}) be the parameter vector estimated using 
the dataset {d1, … , dh}, where h ≥ k (k is the cardinality of an 
MSS). A model manifold matrix, H, can be defined as 

def
( ) { : ( ; ) 0},dd R f d  HH x x           (1) 

where x is a parameter vector and fH is a smoothing function 
whose zero-level set contains all points that fit model H 

instantiated with parameter vector x. We define the error 
associated with datum d with respect to manifold H(x) as the 
distance from d to H(x). The distance function is the Euclidean 
norm, 
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1
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The number of RANSAC iterations for estimating H is 
determined as in [3] as 

log

log(1 )
T

q

 
   

.                (3) 

Let q be the probability of sampling an MSS that produces 
an accurate estimate of the model parameters from dataset D. 
Here, q is usually set to 0.99. Consequently, the probability of 
picking an MSS with at least one outlier is 1–q. If we construct 
h different MSSs, then the probability that all of them are 
contaminated by outliers is (1 − q)h. We would like to choose a 
large enough h (that is, the number of iterations) so that the 
probability (1 − q)h is smaller than or equal to a certain 
probability threshold, ε (often called the alarm rate). 

We use the SVD method to calculate the H-matrix described 
above from four pairs of correspondences. SVD is based on a 
theorem from linear algebra, which states that a rectangular 
matrix A can be broken down into the product of three 
matrices — an orthogonal matrix U, a diagonal matrix S, and 
the transpose of an additional orthogonal matrix; in this case, V. 
The theorem is usually presented similar to [31] as 

T
mn mn nn nnA U S V ,                (4) 

where UTU = I, VTV = I; the columns of U are orthonormal 
eigenvectors of AAT, the columns of V are orthonormal 
eigenvectors of ATA, and S is a diagonal matrix containing the 
square roots of the eigenvalues from U or V in descending order. 

After decomposition of matrix A, its inverse is trivial to 
compute — if matrix A is a square, N × N, then U, V, and S are 
all square matrices of the same size. Because U and V are 
orthogonal, their inverses are equal to their transposes, and 
because S is diagonal, its inverse is a diagonal matrix whose 
elements are the reciprocals of elements Sj. From (4) the 
inverse of A is 

1 T[diag(1/ )]nn j nnS   A V U .           (5) 

We define H to be a homography matrix for a transformation 
from the correspondence of images A and B. The matrix H can 
be calculated using the inverse of A as follows: 

1

T[diag(1/ )] .nn j nnS






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AH B

H A B

H V U B

            (6) 
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Fig. 5. Image stitching result by C-modeling program. 
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Table 1. SW operation time for H-matrix generation by 32-bit EISC 
processor for 200 MHz clock. 

Task Time Features 

Feature extraction for left image 10 s 764 features 

Feature extraction for right image 9 s 484 features 

Correspondence matching 2.3 s 196 pairs 

RANSAC/SVD 217 ms 188 inliers 

Total 21.517 s N/A 

 

 
Figure 5 shows the results of a stitched image from three 

VGA input images, and the method described above is used  
to make an H-matrix. In addition, Table 1 shows the SW 
operation time for the generation of an H-matrix using a 32-bit 
EISC process for a 200 MHz clock. 

IV. Proposed HW Architecture for Real-Time Failure 
Detection 

We designed the image stitching engine as shown in Fig. 6. 
The engine consists of a warping module, blending module, 
and stitching control module. The warping module warps each 
input image frame according to the H-matrix generated by the  

 

Fig. 6. HW block diagram of image stitching engine. 
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SW at the initial frame. For efficient communications with 
vision SoCs, the proposed engine supports an AXI interface. 

1. Fast Linear Warping Method and its Efficient HW 
Architecture 

The homography matrix Hab is a 3 × 3 matrix representing the 
relationship between pixel coordinates from two planes (A and 
B) taken from an input image (see Fig. 7). In the figure, A and B 
are the original and warped images of the input image, 
respectively, and pa and pb are a given pair of pixel coordinates, 
one from each respective plane. Pixel coordinates within the 
warped image can be calculated using matrix multiplications, as 
in (8) below, since we assumed an affine transform in Section II. 

1,b ab a a ab b
 p H p p H p ,         (7)  
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11 12 13

21 22 23

31 31 31

11 12 13

21 22 23

, , ,

, , .

1 1 0 0 1

a b

a a b b ab

a b

a b

a a b b ab

x x h h h

y y h h h

z z h h h

x x h h h

y y h h h

     
            
          
     
            
          

p p H

p p H
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A transformed x- and y-coordinate, xb and yb, respectively, 
can be calculated from (8) and (9), and is given as (10) below. 

11 12 13
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Fig. 7. Planar perspective projection relating homography and 
coordinate system transformation between two images.
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To obtain a transformed position of an original pixel, four 
multiplications and four additions are needed, as shown in (10) 
and Fig. 8, which shows the general HW architecture of an 
address generator for warping images. 

Although transforming a single pixel is not a difficult 
operation, the total number of multiplications/additions per 
frame is not a negligible quantity, since we should calculate a 
new pixel position for every pixel. When the 640 × 480 sized 
images are warped at every 1/30 s, the total number of 
multiplications per second exceeds 36 million since we should 
calculate, per frame, a new pixel position for every pixel [23].  
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An transformed pixel position can be represented as (xb, m, n,  

 

Fig. 9. Coordinate system for linear calculation. 
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yb,m,n), where m and n are integers denoting the x and y 
positions, respectively, and are ranged according to the image 
size. If the image size is N × M, then m and n are ranged from 0 
to (N – 1), and from 0 to (M – 1), respectively. Since m and n 
can be generated sequentially, we can obtain (11) from (10). As 
can be seen in (11), a transformed pixel position can be 
calculated by only two additions, whereas a conventional 
method needs four multiplications and additions. Thus, we can 
reduce the complexity of a transformed pixel point–generator 
based on a HW linear address generator as follows. 

We can calculate all coordinates of x and y through a linear 
operation without multiplication after generating only four 
transformed pixel positions, as shown in Fig. 9. Because we 
use a fixed H-matrix, the four transformed pixel positions are 
calculated only once for an initial state by an EISC processor. 
The linear equations for the transformation of a pixel position 
can be calculated as 
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As shown in (12), we can calculate all transformed coordinates 
of x and y using a linear operation through eight constant 
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Fig. 10. Proposed HW architecture of address generator based on 
adder and register for fast linear warping method. 
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              x == 0;
       rst1y = 0 when
              x == 0;
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              y==0;
       rst2y = 0 when
              y==0;
       en2x = 0 when
              x==N–1;
       en2y = 0 when
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End
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values, Tx0, Tx1, Tx2, Tx3, Ty0, Ty1, Ty2, and Ty3, generated from 
four initial transformed positions, such as (x0, y0), (x1, y1), (x2, 
y2), and (x3, y3), for example. The proposed HW circuit for 
generating the transformed coordinates of x and y is shown in 
Fig. 10 and is composed of ten adders, ten registers, two 
counters for (m, n), and two rounding operators without high-
cost multipliers to reduce the computational complexity by 
90% or more when compared with a conventional method. 

2. Blending Algorithm 

To make natural panoramic moving images, we blend each 
image with a graph cut [32] and alpha blending [33]. 
Whenever two registered images are overlapped, their 
differences are stored in a specified memory area to obtain a 
cut-line. According to the cut-line, which is decided by the 
software, alpha blending is then applied [23]. A cut-line 
decision algorithm can vary by designer. For designers who 
may want to use other algorithms, our engine also supports 
warped-only images for enhanced work using software. 
Whenever good algorithms are developed, they can be 
implemented using the MP in the vision SoC. The equation for 
alpha blending we adopted is shown below. 

blend left right(1 ) ,I I I              (13) 

where Iblend, Ileft, and Iright are the pixel values of blended, left, 
and right images, respectively, and α is a blending parameter 
that corresponds to the ratio of Ileft over Iright. For example, the 
value of α ranges from 0 to 1, where 1 is used at the first pixel 
of the blended image on the left, and 0 is used at the last pixel 
of the blended image on the right. The blending algorithm 
computes the contribution of both images at each and every 
pixel and minimizes the effect of exposure variations [34]. 
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Fig. 11. Failure detection block based on rockstep.  
 
3. Failure Detection 

A standard for the functional safety of road vehicles, 
ISO26262, was recently published [27]. We adopted lockstep 
blocks to fulfill the requirements of this functional safety 
standard. A failure in the state machines in the image stitching 
engine may cause a problem in the SoC or system. Figure 11 
shows a block diagram of the failure detection block, which is 
made up of a redundant state machine, two delay circuits, and a 
comparator based on a rockstep method for each engine core. 
The failure detection block of each engine compares the 
current states of the state machine and two-cycles-delay states 
by the lockstep block to detect any failures. 

4. Dual Core–Based Architecture 

A dual-core engine usually operates properly when stitching 
input images in parallel. When one of the dual-core engines is 
out of order, the other engine will operate normally instead of 
using parallel processing. Using a dual-core structure, we can 
obtain improvements in the functional safety and performance. 
A dual-core SW/HW image stitching engine, as shown in   
Fig. 12, is applied to stitch the input frames in parallel; thus, we 
can improve the performance by 70% or more as compared 
with a single-core operation (see Table 4). 

V. Experimental Results 

1. FPGA Implementation and Test Results 

The proposed image stitching engine is controlled by an 
EISC processor with parameters such as the memory addresses 
used; the image size and format; and the blending area. In 
addition, this engine can be used for any image size, and it 
supports RGB, YCbCr 4:4:4, YCbCr 4:2:0, and YCbCr 4:2:2 
image formats. The designed image stitching engine was 
verified on an FPGA board, as shown in Fig. 13. The 
specifications of the board and test results are summarized in 
Table 2. 
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Fig. 12. Dual core–based architecture. 
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Fig. 13. Image stitching demonstrations using FPGA test board. 
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Table 2. Specifications of FPGA implementations and performance 
of image stitching. 

Category Features 

Device Altera Stratix IV EP4SGX530 

Logic count 
4,884 Combinational ALUTs  

3,298 registers, 5,280 bits mem 

Processor 32bit EISC from ADChips [26] 

System bus Full-matrix AXI (64 bit) 

External memory Mobile DDR 

System clock 25 MHz 

Performance VGA 3 × 3 fps @ 25 MHz 

 

 
2. Single-Chip Implementation and Test Results 

Table 3 shows the results of a gate-level synthesis of the 
image stitching engine and its performance analysis. We used  

Table 3. Synthesized results. 

Category Features 

Tool Synopsys Design Compiler TM 

Process 65 nm (GF) 

Operating clock Max 333 MHz 

Core 1 245,220 µm2 (127,514 gates) 
Engine size 

Core 2 245,104 µm2 (127,454 gates) 

Performance analysis VGA 44 × 3 fps @ 200 MHz (single core) 

 

 
Synopsys Design CompilerTM and a 65 nm Global Foundry 
process. We conducted place and route (PnR) and post-
simulation processes with a 200 MHz clock-speed constraint 
for our design. According to our simulations after PnR, three 
YCbCr 4:2:0 formatted VGA images can be stitched at about a 
maximum of 44 fps for a 200 MHz main clock with a single- 
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Table 4. Comparison with other similar image stitching systems [38]. 

Systems 
Test image 
resolution 

Frame rate @ test 
image resolution 

Test image  
resolution × fps

System clock  
(Mem. clock) 

Implementation 
method 

Cost (size) 

Ladybug2 [35] 1,024 × 768 × 6 15 fps 70,778,880 N/A SW, PC, video card High 

Ladybug3 [35] 1.6 k × 1.2 k × 6 6.5 fps 74,880,370 N/A SW, PC, video card High 

FascinatE [36] 7 k × 2 k 25 fps 350,000,000 N/A SW, PC, video card Ultra high 

Panoptic camera [37] 256 × 1,024 25 fps 6,553,600 
212 MHz  

(SRAM, 212 MHz) 
HW, 2 FPGA 

Medium (2 × 35 mm × 
35 mm, FPGA size) 

Yuan Xu [38] 6 k × 720 15 fps 64,800,000 
100 MHz  

(DDR 3,400 MHz) 
HW, 1 FPGA 

Low (31 mm × 31 mm, 
FPGA size) 

This paper  
(single core) 

640 × 480 × 3 44 fps 40,550,400 
200 MHz  

(Mobile DDR, 100 MHz)
SW/HW, 1 ASIC 

Ultra low 

(500 µm × 500 µm,  
stitching engine size) 

This paper  
(dual core) 

640 × 480 × 3 75 fps 69,120,000 
200 MHz  

(Mobile DDR, 100 MHz)
SW/HW, 1 ASIC 

Ultra low 

(2 × 500 µm × 500 µm, 
stitching engine size) 

 

 

 

Stitching
end 

Fig. 14. Back-end simulation results in case of single core. 
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Fig. 15. Results of PnR and die photograph of SoC. 
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core operation without an LCD display. Figure 14 shows the 
back-end simulation results. Figure 15 shows the results of the 
PnR process and a die photograph of the SoC. Figures 16 and 
17 show real-time image stitching demonstrations using an 
SoC test board. 

3. Comparison with Other Systems 

Table 4 shows the comparison among five similar image 
stitching systems. Ladybug2 and Ladybug3 are the systems 
from Grey Point [35]. Ladybug2 is a spherical video system  

 

 

Fig. 16. Real-time image stitching demonstration using SoC test 
board and captured load images. 

3 input images 

Panoramic image 

 

 

Fig. 17. Real-time image stitching demonstration with SoC test
board in moving vehicle. 

3 input images 

Panoramic image 

 
 
that can reach a resolution of 1,024 × 768 × 6 pixels at 15 fps.  
Ladybug3 has improved the resolution up to 1,600 × 1,200 ×	6 
pixels at 6.5 fps. They are high cost implementations based on 
a PC and its video card. A panoptic camera [37] can perform an 
overall resolution of 1,024 × 256 pixels at 25 fps. An EU-
funded research project, FascinatE, [36] is performed on six 
high-definition (HD) cameras, resulting in an overall resolution 
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of 7,000 × 2,000 pixels at 25 fps. It is a piece of high-end 
broadcasting equipment based on a Cine Card PCI-card that 
supports up to 14 projectors per PC — the cost of which is 
extremely high. The compact version of the FacinatE system 
weighs about 16 kg. Yuan Xu’s system [38] can provide a 
resolution of 6,000 × 720 pixels at 15 fps with one low-cost 
FPGA; the size of the FPGA is 31 mm × 31 mm, and the 
weight of the system is about 700 g.  

The proposed single-core stitching engine can provide 
panoramic images from three VGA images at about a 
maximum of 44 fps for a 200 MHz clock with the smallest size 
of 500 μm × 500 μm. The dual-core stitching engine is applied 
to stitching input frames in parallel so we can improve the 
performance by 70% or more as compared with a single-core 
operation. In comparison with other systems, the proposed 
SW/HW stitching engine is of ultra-low cost and size, as well 
as being a high-performing and portable real-time system. 

VI. Conclusion 

In this paper, we proposed an efficient architecture of a real-
time image stitching engine for a vision SoC of a motor vehicle. 
We adopt panoramic images from multiple telegraphic 
cameras to enlarge the detection distance and area for safety. 
We designed the engine using SW and HW based on a fixed 
homography for real-time processing within the environment 
of a moving vehicle. The proposed HW engine is based on a 
linear transform of the pixel positions to reduce the hardware 
complexity by more than 90%. In addition, using a dual-core 
structure, we can obtain improvements in functional safety and 
performance. The dual image stitching engines are fabricated 
in an SoC with 254,968 gate counts using Global Foundry’s  
65 nm CMOS process. The single engine can make panoramic 
images from three YCbCr 4:2:0 formatted VGA images at 
about a maximum of 44 fps for a 200 MHz clock without an 
LCD display. The engine performs well using an AXI-BUS-
based vision SoC in real time. We expect that the proposed 
engine can be applied not only to driving assistance systems 
that have vision-based object detection ability and a heads-up 
display function, but also to image processing systems that 
have a panoramic view function, such as a digital camcorder or 
smartphone. 
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