• 제목/요약/키워드: 4NF

검색결과 1,177건 처리시간 0.027초

Garcinol, an Acetyltransferase Inhibitor, Suppresses Proliferation of Breast Cancer Cell Line MCF-7 Promoted by 17β-Estradiol

  • Ye, Xia;Yuan, Lei;Zhang, Li;Zhao, Jing;Zhang, Chun-Mei;Deng, Hua-Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권12호
    • /
    • pp.5001-5007
    • /
    • 2014
  • The acetyltransferase inhibitor garcinol, a polyisoprenylated benzophenone, is extracted from the rind of the fruit of Garcinia indica, a plant found extensively in tropical regions. Anti-cancer activity has been suggested but there is no report on its action via inhibiting acetylation against cell proliferation, cell cycle progression, and apoptosis-inhibtion induced by estradiol ($E_2$) in human breast cancer MCF-7 cells. The main purposes of this study were to investigate the effects of the acetyltransferase inhibitor garcinol on cell proliferation, cell cycle progression and apoptosis inhibition in human breast cancer MCF-7 cells treated with estrogen, and to explore the significance of changes in acetylation levels in this process. We used a variety of techniques such as CCK-8 analysis of cell proliferation, FCM analysis of cell cycling and apoptosis, immunofluorescence analysis of NF-${\kappa}B$/p65 localization, and RT-PCR and Western blotting analysis of ac-H3, ac-H4, ac-p65, cyclin D1, Bcl-2 and Bcl-xl. We found that on treatment with garcinol in MCF-7 cells, $E_2$-induced proliferation was inhibited, cell cycle progression was arrested at G0/G1 phase, and the cell apoptosis rate was increased. Expression of ac-H3, ac-H4 and NF-${\kappa}B$/ac-p65 proteins in $E_2$-treated MCF-7 cells was increased, this being inhibited by garcinol but not ac-H4.The nuclear translocation of NF-${\kappa}B$/p65 in $E_2$-treated MCF-7 cells was also inhibited, along with cyclin D1, Bcl-2 and Bcl-xl in mRNA and protein expression levels. These results suggest that the effect of $E_2$ on promoting proliferation and inhibiting apoptosis is linked to hyperacetylation levels of histones and nonhistone NF-${\kappa}B$/p65 in MCF-7 cells. The acetyltransferase inhibitor garcinol plays an inhibitive role in MCF-7 cell proliferation promoted by $E_2$. Mechanisms are probably associated with decreasing ac-p65 protein expression level in the NF-${\kappa}B$ pathway, thus down-regulating the expression of cyclin D1, Bcl-2 and Bcl-xl.

Sulforaphane controls TPA-induced MMP-9 expression through the NF-κB signaling pathway, but not AP-1, in MCF-7 breast cancer cells

  • Lee, Young-Rae;Noh, Eun-Mi;Han, Ji-Hey;Kim, Jeong-Mi;Hwang, Bo-Mi;Kim, Byeong-Soo;Lee, Sung-Ho;Jung, Sung Hoo;Youn, Hyun Jo;Chung, Eun Yong;Kim, Jong-Suk
    • BMB Reports
    • /
    • 제46권4호
    • /
    • pp.201-206
    • /
    • 2013
  • Sulforaphane [1-isothiocyanato-4-(methylsulfinyl)-butane] is an isothiocyanate found in some cruciferous vegetables, especially broccoli. Sulforaphane has been shown to display anti-cancer properties against various cancer cell lines. Matrix metalloproteinase-9 (MMP-9), which degrades the extracellular matrix (ECM), plays an important role in cancer cell invasion. In this study, we investigated the effect of sulforaphane on 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced MMP-9 expression and cell invasion in MCF-7 cells. TPA-induced MMP-9 expression and cell invasion were decreased by sulforaphane treatment. TPA substantially increased NF-${\kappa}B$ and AP-1 DNA binding activity. Pre-treatment with sulforaphane inhibited TPA-stimulated NF-${\kappa}B$ binding activity, but not AP-1 binding activity. In addition, we found that sulforaphane suppressed NF-${\kappa}B$ activation, by inhibiting phosphorylation of $I{\kappa}B $ in TPA-treated MCF-7 cells. In this study, we demonstrated that the inhibition of TPA-induced MMP-9 expression and cell invasion by sulforaphane was mediated by the suppression of the NF-${\kappa}B$ pathway in MCF-7 cells.

Effects of G-Rh2 on mast cell-mediated anaphylaxis via AKT-Nrf2/NF-κB and MAPK-Nrf2/NF-κB pathways

  • Xu, Chang;Li, Liangchang;Wang, Chongyang;Jiang, Jingzhi;Li, Li;Zhu, Lianhua;Jin, Shan;Jin, Zhehu;Lee, Jung Joon;Li, Guanhao;Yan, Guanghai
    • Journal of Ginseng Research
    • /
    • 제46권4호
    • /
    • pp.550-560
    • /
    • 2022
  • Background: The effect of ginsenoside Rh2 (G-Rh2) on mast cell-mediated anaphylaxis remains unclear. Herein, we investigated the effects of G-Rh2 on OVA-induced asthmatic mice and on mast cell-mediated anaphylaxis. Methods: Asthma model was established for evaluating airway changes and ear allergy. RPMCs and RBL-2H3 were used for in vitro experiments. Calcium uptake, histamine release and degranulation were detected. ELISA and Western blot measured cytokine and protein levels, respectively. Results: G-Rh2 inhibited OVA-induced airway remodeling, the production of TNF-α, IL-4, IL-8, IL-1β and the degranulation of mast cells of asthmatic mice. G-Rh2 inhibited the activation of Syk and Lyn in lung tissue of OVA-induced asthmatic mice. G-Rh2 inhibited serum IgE production in OVA induced asthmatic mice. Furthermore, G-Rh2 reduced the ear allergy in IgE-sensitized mice. G-Rh2 decreased the ear thickness. In vitro experiments G-Rh2 significantly reduced calcium uptake and inhibited histamine release and degranulation in RPMCs. In addition, G-Rh2 reduced the production of IL-1β, TNF-α, IL-8, and IL-4 in IgE-sensitized RBL-2H3 cells. Interestingly, G-Rh2 was involved in the FcεRI pathway activation of mast cells and the transduction of the Lyn/Syk signaling pathway. G-Rh2 inhibited PI3K activity in a dose-dependent manner. By blocking the antigen-induced phosphorylation of Lyn, Syk, LAT, PLCγ2, PI3K ERK1/2 and Raf-1 expression, G-Rh2 inhibited the NF-κB, AKT-Nrf2, and p38MAPK-Nrf2 pathways. However, G-Rh2 up-regulated Keap-1 expression. Meanwhile, G-Rh2 reduced the levels of p-AKT, p38MAPK and Nrf2 in RBL-2H3 sensitized IgE cells and inhibited NF-κB signaling pathway activation by activating the AKT-Nrf2 and p38MAPK-Nrf2 pathways. Conclusion: G-Rh2 inhibits mast cell-induced allergic inflammation, which might be mediated by the AKT-Nrf2/NF-kB and p38MAPK-Nrf2/NF-κB signaling pathways.

유근피(楡根皮) 추출물의 활성종 억제 및 염증 촉진 인자 제어 효과 (The Inhibitory Effects of Ulmus davidiana on the Reactive Species and Proinflammatory Proteins)

  • 조은영;정지천
    • 대한한방내과학회지
    • /
    • 제29권2호
    • /
    • pp.421-431
    • /
    • 2008
  • Objectives : This study was to investigate the inhibitory effects of Ulmus davidiana on the generation of peroxynitrite $(ONOO^{-})$, nitric oxide (NO) and superoxide anion radicals $(O_{2}^{-})$ in the endothelial cells of rat vessels. The effects of Ulmus davidiana on the expression of inflammation-related proteins, $NF-{\kappa}B$ (p50, p65), COX-2, and iNOS, were examined by western blotting. Methods : For this study, fluorescent probes, namely dihydrorhodamine 123 (DHR 123), 4,5-diaminofluorescein (DAF-2) and 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) were used. Western blotting was performed via using anti-$NF-{\kappa}B$ (p50, p65), anti-COX-2, and anti-iNOS, respectively. Results : Ulmus davidiana inhibited the generation of $ONOO^{-}$, NO and $(O_{2}^{-})$ in the lipopolysaccharide (LPS)-treated endothelial cells of rat vessels in vitro. Ulmus davidiana inhibited the expression of COX-2 and iNOS genes by means of decreasing the $NF-{\kappa}B$ activation. Conclusions : These results suggest Ulmus davidiana is effective on inhibiting the generation of $ONOO^{-}$, NO and $O_{2}^{-}$, and that therefore it might have a potential role as a treatment for the inflammatory process and inflammation-related diseases.

  • PDF

Molecular Cloning and Characterization of Maltooligosyltrehalose Synthase Gene from Nostoc flagelliforme

  • Wu, Shuangxiu;Shen, Rongrong;Zhang, Xiu;Wang, Quanxi
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권3호
    • /
    • pp.579-586
    • /
    • 2010
  • A genomic DNA fragment encoding a putative maltooligosyltrehalose synthase (NfMTS) for trehalose biosynthesis was cloned by the degenerate primer-PCR from cyanobacterium Nostoc flagelliforme. The ORF of NfMTS was 2,799 bp in length and encoded 933 amino acid residues constituting a 106.6 kDa protein. The deduced amino acid sequence of NfMTS contained 4 regions highly conserved for MTSs. By expression of NfMTS in E. coli, it was demonstrated that the recombinant protein catalyzed the conversion of maltohexaose to maltooligosyl trehalose. The $K_m$ of the recombinant enzyme for maltohexaose was 1.87 mM and the optimal temperature and pH of the recombinant enzyme was at $50^{\circ}C$ and 7.0, respectively. The expression of MTS of N. flagelliforme was upregulated, and both trehalose and sucrose contents increased significantly in N. flagelliforme during drought stress. However, trehalose accumulated in small quantities (about 0.36 mg/g DW), whereas sucrose accumulated in high quantities (about 0.90 mg/g DW), indicating both trehalose and sucrose were involved in dehydration stress response in N. flagelliforme and sucrose might act as a chemical chaperone rather than trehalose did during dehydration stress.

Inhibition of TNF-α-Mediated NF-κB Transcriptional Activity by Dammarane-Type Ginsenosides from Steamed Flower Buds of Panax ginseng in HepG2 and SK-Hep1 Cells

  • Cho, Kyoungwon;Song, Seok Bean;Nguyen, Huu Tung;Kim, Kyoon Eon;Kim, Young Ho
    • Biomolecules & Therapeutics
    • /
    • 제22권1호
    • /
    • pp.55-61
    • /
    • 2014
  • Panax ginseng is a medicinal herb that is used worldwide. Its medicinal effects are primarily attributable to ginsenosides located in the root, leaf, seed, and flower. The flower buds of Panax ginseng (FBPG) are rich in various bioactive ginsenosides, which exert immunomodulatory and anti-inflammatory activities. The aim of the present study was to assess the effect of 18 ginsenosides isolated from steamed FBPG on the transcriptional activity of NF-${\kappa}B$ and the expression of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$)-stimulated target genes in liver-derived cell lines. Noticeably, the ginsenosides $Rk_3$ and $Rs_4$ exerted the strongest activity, inhibiting NF-${\kappa}B$ in a dose-dependent manner. SF and $Rg_6$ also showed moderately inhibitory effects. Furthermore, these four compounds inhibited the TNF-${\alpha}$-induced expression of IL8, CXCL1, iNOS, and ICAM1 genes. Consequently, ginsenosides purified from steamed FBPG have therapeutic potential in TNF-${\alpha}$-mediated diseases such as chronic hepatic inflammation.

Structural Features of Polyphenolic Compounds in Their NO Inhibitory Activities

  • Kim, Byung-Hun;Lee, Yong-Gyu;Kim, Tae-Woong;Cho, Jae-Youl
    • Biomolecules & Therapeutics
    • /
    • 제17권1호
    • /
    • pp.79-85
    • /
    • 2009
  • Polyphenolic compounds are reported to have various pharmacological activities such as anti-oxidative, anti-cancerous, anti-inflammatory and anti-aging effects. Although numerous papers explore their functional roles in many different cellular actions, not many studies handle their structural features in anti-inflammatory responses. In this study, therefore, we examined structural role of substituted transstilbenes in their NO inhibitory and NF-${\kappa}B$ suppressive activities. Of 10 compounds tested, 4 compounds (cinnamic acid, resveratrol, piceatannol and curcumin) displayed NO inhibitory activities in a dose-dependent manner. Similarly, these compounds blocked LPS-induced cytotoxicity of RAW264.7 cells. All NO inhibitory compounds also inhibited $I{\kappa}B{\alpha}$ phosphorylation, a hallmark for NF-${\kappa}B$ activation. However, these inhibitory compounds exhibited distinct suppressive pattern in tumor necrosis factor (TNF)-${\alpha}$- or phorbol-12-myristate-13-acetate (PMA)-induced NF-${\kappa}B$ and AP-1 activation. According to structure-activity relationship study, polarity and size of ring B seem to be important for diminishing NO production. Therefore, our data suggest that substituted trans-stilbenes can be developed as novel anti-inflammatory drug or further developed as lead compounds for another improvement.

Development of the ultra/nano filtration system for textile industry wastewater treatment

  • Rashidi, Hamidreza;Sulaiman, Nik Meriam Nik;Hashim, Nur Awanis;Bradford, Lori;Asgharnejad, Hashem;Larijani, Maryam Madani
    • Membrane and Water Treatment
    • /
    • 제11권5호
    • /
    • pp.333-344
    • /
    • 2020
  • Advances in industrial development and waste management over several decades have reduced many of the impacts that previously affected ecosystems, however, there are still processes which discharge hazardous materials into environments. Among industries that produce industrial wastewaters, textile manufacturing processes play a noticeable role. This study was conducted to test a novel continuous combined commercial membrane treatment using polyvinylidene fluoride (PVDF), ultrafiltration (UF), and polyamide (PA) nanofiltration (NF) membranes for textile wastewater treatment. The synthetic textile wastewater used in this study contained sodium silicate, wax, and five various reactive dyes. The results indicate that the removal efficiency for physical particles (wax and resin) was 95% through the UF membrane under optimum conditions. Applying UF and NF hybrid treatment resulted in total effective removal of dye from all synthetic samples. The efficiency of sodium silicate removal was measured to be between 2.5 to 4.5% and 13 to 16% for UF and NF, respectively. The chemical oxygen demand in all samples was reduced by more than 85% after treatment by NF.

LPS로 활성화된 복강 대식세포에서 신이 추출물의 염증성 사이토카인 및 NO 억제 효과 (Water Extract of Flowers of Magnolia Denudata Inhibits LPS-induced Nitric Oxide and Pro-inflammatory Cytokines Production in Murine Peritoneal Macrophage by Inhibiting $NF-{\kappa}B$ Activation)

  • 김도윤;정원석;문형철;박성주
    • 동의생리병리학회지
    • /
    • 제21권4호
    • /
    • pp.916-920
    • /
    • 2007
  • Flowers of Magnolia denudata has been reported to possess a variety of pharmacological activities. In this study, we investigated the anti-inflammatory effects and mechanism of the water extract of Flowers of Magnolia denudata(MD) in lipopolysacchride (LPS)-mediated inflammatory mediators in murine peritoneal macrophages. MD itself does not have any toxic effects in murine peritoneal macrophages. MD inhibits LPS-induced nitric oxide (NO), tumor necrosis factor $(TNF)-{\alpha}$, IL-6 and IL-12 production in murine peritoneal macrophages. Furthermore, we have found that MD inhibited LPS-induced $NF-{\kappa}B$ but not c-Jun N-terminal kinase (JNK), p38 and extracellular signal-ragulated kinase (ERK) activation. These results suggested that MD inhibit LPS-induced production of $TNF-{\alpha}$, IL-6 and IL-12 via suppression of the $NF-{\kappa}B$ activation.

Effect of Forsythiae Fructus Exract on the Release of Inflammatory Mediatorinduced by Lipopolysaccharide in RAW 264.7 Macrophage

  • You, Bok-Jong;Kim, Hee-Taek
    • 동의생리병리학회지
    • /
    • 제21권3호
    • /
    • pp.765-770
    • /
    • 2007
  • Forsythiae fructus has traditionally been used for the treatment of erysipelas, skin rash and acute or chronic inflammatory disorders. The effect of Forsythiae fructus against lipopolysaccharide-induced inflammation was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, reverse transcription-polymerase chain reaction (RT-PCR), on mouse RAW 264.7 macrophages. Forsythiae fructus extract suppressed the expression of iNOS, COX-2 and NF-$_K$B mRNAs on the lipopolysaccharide-stimulated enhancement in RAW 264.7 macrophages. We examined the expression of iNOS and COX-2 in both mRNA and protein levels to investigate the mechanism by which Forsythiae fructus extract inhibits NO production. Forsythiae fructus extract significantly reduced iNOS, NF-$_K$B and PGE$_2$, but didn't inhibit COX-2 expression which was induced by LPS treatment in Raw 264.7 cells. These results suggest that Forsythiae fructus exerts anti-inflammatory effects probably by suppression of the iNOS and NF-$_K$B expressions.