• Title/Summary/Keyword: 4-Point Bending Test

Search Result 288, Processing Time 0.031 seconds

Strength Analysis of 3D Concrete Printed Mortar Prism Samples (3D 콘크리트 프린팅된 모르타르 프리즘 시편의 강도 분석)

  • Kim, Sung-Jo;Bang, Gun-Woong;Han, Tong-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.4
    • /
    • pp.227-233
    • /
    • 2022
  • The 3D-printing technique is used for manufacturing objects by adding multiple layers, and it is relatively easy to manufacture objects with complex shapes. The 3D concrete printing technique, which incorporates 3D printing into the construction industry, does not use a formwork when placing concrete, and it requires less workload and labor, so economical construction is possible. However, 3D-printed concrete is expected to have a lower strength than that of molded concrete. In this study, the properties of 3D-printed concrete were analyzed. To fabricate the 3D-printed concrete samples, the extrusion path and shape of the samples were designed with Ultimaker Cura. Based on this, G-codes were generated to control the 3D printer. The optimal concrete mixing proportion was selected considering such factors as extrudability and buildability. Molded samples with the same dimensions were also fabricated for comparative analysis. The properties of each sample were measured through a three-point bending test and uniaxial compression test, and a comparative analysis was performed.

The effect of low temperature aging on the mechanical property & phase stability of Y-TZP ceramics

  • Kim, Hyung-Tae;Han, Jung-Suk;Yang, Jae-Ho;Lee, Jai-Bong;Kim, Sung-Hun
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.3
    • /
    • pp.113-117
    • /
    • 2009
  • STATEMENT OF PROBLEM. Recently Yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP) has been introduced due to superior flexural strength and fracture toughness compared to other dental ceramic systems. Although zirconia has outstanding mechanical properties, the phenomenon of decrease in the life-time of zirconia resulted from degradation in flexural strength after low temperature aging has been reported. PURPOSE. The objective of this study was to investigate degradation of flexural strength of Y-TZP ceramics after various low temperature aging treatments and to evaluate the phase stability and micro-structural change after aging by using X-ray diffraction analysis and a scanning electron microscope (SEM). MATERIAL AND METHODS. Y-TZP blocks of Vita In-Ceram YZ (Vita Zahnfabrik, Bad $S\ddot{a}ckingen$, Germany) were prepared in 40 mm (length) $\times$ 4 mm (width) $\times$ 3 mm (height) samples. Specimens were artificially aged in distilled water by heat-treatment at a temperature of 75, 100, 125, 150, 175, 200, and $225^{\circ}C$ for 10 hours, in order to induce the phase transformation at the surface. To measure the mechanical property, the specimens were subjected to a four-point bending test using a universal testing machine (Instron model 3365; Instron, Canton, Mass, USA). In addition, X-ray diffraction analysis (DMAX 2500; Rigaku, Tokyo, Japan) and SEM (Hitachi s4700; Jeol Ltd, Tokyo, Japan) were performed to estimate the phase transformation. The statistical analysis was done using SAS 9.1.3 (SAS institute, USA). The flexural strength data of the experimental groups were analyzed by one-way analysis of variance and to detect statistically significant differences ($\alpha$= .05). RESULTS. The mean flexural strength of sintered Vita In-Ceram YZ without autoclaving was 798 MPa. When applied aging temperature at below $125^{\circ}C$ for 10 hours, the flexural strength of Vita In-Ceram YZ increased up to 1,161 MPa. However, at above $150^{\circ}C$, the flexural strength started to decrease. Although low temperature aging caused the tetragonal-to-monoclinic phase transformation related to temperature, the minimum flexural strength was above 700 MPa. CONCLUSION. The monoclinic phase started to appear after aging treatment above $100^{\circ}C$. With the higher aging temperature, the fraction of monoclinic phase increased. The ratio of monoclinic/tetragonal + monoclinic phase reached a plateau value, circa 75% above $175^{\circ}C$. The point of monoclinic concentration at which the flexural strength begins to decrease was between 12% and 54%.

Impact of ZrO2 nanoparticles addition on flexural properties of denture base resin with different thickness

  • Albasarah, Sara;Al Abdulghani, Hanan;Alaseef, Nawarah;al-Qarni, Faisal D.;Akhtar, Sultan;Khan, Soban Q.;Ateeq, Ijlal Shahrukh;Gad, Mohammed M.
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.4
    • /
    • pp.226-236
    • /
    • 2021
  • PURPOSE. This study aimed to evaluate the effect of incorporating zirconium oxide nanoparticles (nano-ZrO2) in polymethylmethacrylate (PMMA) denture base resin on flexural properties at different material thicknesses. MATERIALS AND METHODS. Heat polymerized acrylic resin specimens (N = 120) were fabricated and divided into 4 groups according to denture base thickness (2.5 mm, 2.0 mm, 1.5 mm, 1.0 mm). Each group was subdivided into 3 subgroups (n = 10) according to nano-ZrO2 concentration (0%, 2.5%, and 5%). Flexural strength and elastic modulus were evaluated using a three-point bending test. One-way ANOVA, Tukey's post hoc, and two-way ANOVA were used for data analysis (α = .05). Scanning electron microscopy (SEM) was used for fracture surface analysis and nanoparticles distributions. RESULTS. Groups with 0% nano-ZrO2 showed no significant difference in the flexural strength as thickness decreased (P = .153). The addition of nano-zirconia significantly increased the flexural strength (P < .001). The highest value was with 5% nano-ZrO2 and 2 mm-thickness (125.4 ± 18.3 MPa), followed by 5% nano-ZrO2 and 1.5 mm-thickness (110.3 ± 8.5 MPa). Moreover, the effect of various concentration levels on elastic modulus was statistically significant for 2 mm thickness (P = .001), but the combined effect of thickness and concentration on elastic modulus was insignificant (P = .10). CONCLUSION. Reinforcement of denture base material with nano-ZrO2 significantly increased flexural strength and modulus of elasticity. Reducing material thickness did not decrease flexural strength when nano-ZrO2 was incorporated. In clinical practice, when low thickness of denture base material is indicated, PMMA/nano-ZrO2 could be used with minimum acceptable thickness of 1.5 mm.

Bond strength of fiber reinforced composite after repair (섬유 강화 컴포지트의 수리 후 접합 강도)

  • Kim, Min-Jung;Kim, Kyung-Ho;Choy, Kwang-Chul
    • The korean journal of orthodontics
    • /
    • v.36 no.3 s.116
    • /
    • pp.188-197
    • /
    • 2006
  • Fiber reinforced composite (FRC) is usually used as a connector joining a few teeth into one unit in orthodontics. However, fracture often occurs during the two to three years of the orthodontic treatment period due to repeated occlusal loading or water sorption in the oral environment. We simulated the repair by overlapping and attaching portions of two FRC strips in the middle and performed a three-point bending test to investigate the changes of the repair strength among the different FRC groups. The specimens were grouped according to the overlapping lengths of the two FRC strips, which were 1, 2, 3 and 4 mm (group E1, E2, E3 and E4, respectively) and the control group consisted of unrepaired, intact FRC strips. Each group consisted of 6 specimens and were cured with a light emitting diode curing unit. Group E4 showed the highest maximum loads of 2.67 N, then the control group (2.39 N), group E3 (2.35 N), E2 (2.10 N), and E1 (1.75 N) in decreasing order. Group E4 also showed the highest stiffness, which was 2.32 N/mm, however, the stiffness of group E3 (2.06N/mm) was higher than that of the control group (1.88 N/mm). According to the visual examination, the specimens tended to be bent rather than being fractured into two pieces with an increased length of overlapping portions. The above results suggest that a minimum overlapping length of 3 mm was necessary to obtain an adequate repair of a 10 mm length of FRC connector. In addition, the critical section adjacent to the joint area, where the thickness decreased abruptly, should be reinforced with flowable resin to minimize the bending tendency.

THE AGING EFFECT Of K3B/IM7 IN $80^{\circ}C$ WATER

  • Kim Hyungwon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.31-34
    • /
    • 2005
  • Hygrothermal aging of the laminates of $Avimid^{R}$ K3B/IM7 in $80^{\circ}C$ water was studied as a function of immersion time prior to forming microcracks. The factors causing the $80^{\circ}C$ water to degradation of the laminates could be the degradation of the matrix toughness, change in residual stresses or interfacial damage between the fiber and matrix. The times to saturation in $80^{\circ}C$ water for the laminates and the neat resin are 100 hours and 500 hours. After 500 hours aging of the neat resin in $80^{\circ}C$ water, the glass transition temperature was changed less than $1\%$ by DSC test and the weight gain was $1.55\%$ increase. After 500 hours aging, the fracture toughness of the neat resin was decreased about $37\%$ by 3-point bending test. After 100 hours aging of the [+45/0/-45/90]s K3B/IM7 laminates in $80^{\circ}C$ water, the weight gain was $0.41\%$ increase. The $80^{\circ}C$ water diffusion rate into the neat resin was faster than into the laminates. In 100 hours, the loss of the microcracking toughness of the laminates was $28\%$ of the original toughness by our own microcracking fracture toughness criterion.

  • PDF

Investigating meso-scale low-temperature fracture mechanisms of recycled asphalt concrete (RAC) via peridynamics

  • Yuanjie Xiao;Ke Hou;Wenjun Hua;Zehan Shen;Yuliang Chen;Fanwei Meng;Zuen Zheng
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.605-619
    • /
    • 2024
  • The increase of reclaimed asphalt pavement (RAP) content in recycled asphalt concrete (RAC) is accompanied by the degradation of low-temperature cracking resistance, which has become an obstacle to the development of RAC. This paper aims to reveal the meso-scale mechanisms of the low-temperature fracture behavior of RAC and provide a theoretical basis for the economical recycling of RAP. For this purpose, micromechanical heterogeneous peridynamic model of RAC was established and validated by comparing three-point bending (TPB) test results against corresponding numerical simulation results of RAC with 50% RAP content. Furthermore, the models with different aggregate shapes (i.e., average aggregates circularity (${\bar{C_r}}=1.00$, 0.75, and 0.50) and RAP content (i.e., 0%, 15%, 30%, 50%, 75%, and 100%) were constructed to investigate the effect of aggregate shape and RAP content on the low-temperature cracking resistance. The results show that peridynamic models can accurately simulate the low-temperature fracture behavior of RAC, with only 2.9% and 13.9% differences from the TPB test in flexural strength and failure strain, respectively. On the meso-scale, the damage in the RAC is mainly controlled by horizontal tensile stress and the stress concentration appears in the interface transition zone (ITZ). Aggregate shape has a significant effect on the low-temperature fracture resistance, i.e., higher aggregate circularity leads to better low-temperature performance. The large number of microcracks generated during the damage evolution process for the peridynamic model with circular aggregates contributes to slowing down the fracture, whereas the severe stress concentration at the corners leads to the fracture of the aggregates with low circularity under lower stress levels. The effect of RAP content below 30% or above 50% is not significant, but a substantial reduction (16.9% in flexural strength and 16.4% in failure strain) is observed between the RAP content of 30% and 50%. This reduction is mainly attributed to the fact that the damage in the ITZ region transfers significantly to the aggregates, especially the RAP aggregates, when the RAP content ranges from 30% to 50%.

COMPARISON OF MECHANICAL PROPERTIES IN 4 INDIRECT COMPOSITE RESIN (4종의 간접법용 복합 레진의 기계적 특성 비교)

  • Kim, Kil-Soo;Yoon, Tae-Ho;Song, Kwang-Yeob;Ahn, Seung-Geun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.1
    • /
    • pp.21-33
    • /
    • 2007
  • Statement of problem: The esthetic component of dental care has become increasingly more important, while new tooth-colored materials are continually marketed. Various new indirect composite materials have been developed with required advantages. The most recent development in the indirect composites has been the introduction of the second-generation laboratory composite or poly-glass materials. They are processed by different laboratory techniques based on combinations of heat, pressure, vacuum and light polymerization. Although, second generation products became available in 1995, their characteristics and clinical performance have not been adequately investigated. Purpose: The aim of this study was to measure the mechanical properties of the second generation indirect resin system and compare these with an existing universal direct composite resin. Material and method: In this study four indirect composite material (Adoro LC, BelleGlass HP, Tescera, Synfony) were tested for flexural strength, wear resistance, hardness and their degree of conversion against Z250, a light cure direct composite. Results: Within the limitations of this study, the following conclusions were drawn: 1. From the abrasion wear result, Adoro showed the least volume loss while Synfony showed the greatest volume loss. Z250 and BelleGlass HP didn't show significant difference (p>0.05), but they showed significant difference with other groups (p<0.05). From the attrition wear, BelleGlass HP showed the least volume loss and it didn’t show significant difference with Tescera (p>0.05). While Synfony showed the greatest volume loss that it showed significant difference with other groups (p>0.05). 2. Mean values of flexural strength by means of three point bending test was in the order of Z250, Adoro, Belleglass HP, Tescera and Synfony. Mean elastic modulus was in the order of Z250, BelleGlass HP, Tescera, Adoro and Synfony. 3. The result of Vicker‘s microhardness value showed that significantly higher value in Z250 (p<0.05), and is in the order of BelleGlass HP, Tescera, Adoro and Synfony. 4. The degree of conversion measured by FT-IR showed significantly higher value in BelleGlass HP (p<0.05), and is in the order of Adoro, Synfony, Tescera and Z250. Conclusion: Significant differences were found in the flexural strength, wear resistance, hardness and their degree of conversion.

Effect of Post-annealing on the Interfacial adhesion Energy of Cu thin Film and ALD Ru Diffusion Barrier Layer (후속 열처리에 따른 Cu 박막과 ALD Ru 확산방지층의 계면접착에너지 평가)

  • Jeong, Minsu;Lee, Hyeonchul;Bae, Byung-Hyun;Son, Kirak;Kim, Gahui;Lee, Seung-Joon;Kim, Soo-Hyun;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.7-12
    • /
    • 2018
  • The effects of Ru deposition temperature and post-annealing conditions on the interfacial adhesion energies of atomic layer deposited (ALD) Ru diffusion barrier layer and Cu thin films for the advanced Cu interconnects applications were systematically investigated. The initial interfacial adhesion energies were 8.55, 9.37, $8.96J/m^2$ for the sample deposited at 225, 270, and $310^{\circ}C$, respectively, which are closely related to the similar microstructures and resistivities of Ru films for ALD Ru deposition temperature variations. And the interfacial adhesion energies showed the relatively stable high values over $7.59J/m^2$ until 250h during post-annealing at $200^{\circ}C$, while dramatically decreased to $1.40J/m^2$ after 500 h. The X-ray photoelectron spectroscopy Cu 2p peak separation analysis showed that there exists good correlation between the interfacial adhesion energy and the interfacial CuO formation. Therefore, ALD Ru seems to be a promising diffusion barrier candidate with reliable interfacial reliability for advanced Cu interconnects.

Evaluation of Flexural Properties of Indirect Gum-Shade Composite Resin for Esthetic Improvement (심미성 향상을 위한 간접수복용 Gum-Shade 복합레진의 굽힘 특성 평가)

  • Im, Yong-Woon;Hwang, Seong-Sig
    • Journal of dental hygiene science
    • /
    • v.15 no.4
    • /
    • pp.407-412
    • /
    • 2015
  • This study investigated flexural properties of indirect Gum-shade composite resins for esthetic improvement. The material utilized in this study was Crea.lign, Twiny flow and Twiny paste (TP). Ten specimens were fabricated with a dimension of $25{\times}2{\times}2mm$ according to the ISO 4049. After fabrications, specimens were stored in the distilled water for 24 hours at the temperature of $37^{\circ}C$. Three-point bending test was performed in universal testing machine (Instron 3344; Instron, USA) at a crosshead speed of 1 mm/min until the failure occurred. TP exhibited a higher flexural strength (FS) and flexural modulus (FM) compared to the flowable materials. There were significant differences among the three materials in FS and FM. However, there was no significant difference in work of fracture (WOF) in all tested materials (p>0.05). In Weibull analysis, TP showed the greatest Weibull modulus which means a higher reliability of the materials. Also, Gum-shade composite resins revealed a strong correlation in all flexural properties. There was a positive correlation in FS-FM ($r^2=0.99$) and a negative correlation between FS-WOF and FM-WOF ($r^2>0.97$). Therefore, this confirmed that flexural property was important for mechanical behavior evaluation and useful information. To addition, this improved among mechanical properties correlation of materials as important factor.

Mechanical Performance Evaluation of RC Beams with FRP Hybrid Bars under Cyclic Loads (FRP 하이브리드 보강근을 가지는 RC보의 반복하중에 대한 역학적 성능 평가)

  • Hwang, Chul-Sung;Park, Jae-Sung;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.9-14
    • /
    • 2017
  • In the present work, a mechanical performances under cyclic loading in RC (Reinforced Concrete) beams with normal steel and FRPH (Fiber Reinforced Plastic Hybrid) bar are investigated. For the work, RC beam members with $200{\times}200{\times}2175mm$ of geometry and 24 Mpa of design strength are prepared, and 4-point-bending tests are performed for evaluation of cracking, yielding, and ultimate loads. Through static loading test, 48.9kN and 36.0 kN of yielding loads are measured for normal RC and FRPH beam, respectively. They have almost same ultimate load of 50.0 kN. Typical tension hardening behavior is observed in FRPH beam, which is caused by the behavior of FRPH bar with tension hardening. In cyclic loading conditions, FRPH beam has more smaller crack width and scattered crack pattern, and it shows more elastic recovery than normal RC beam. The energy dissipation ratio in FRPH beam is 0.83, which is greater than 0.62 in normal RC beam and it shows more effective resistance to cyclic loadings.