DOI QR코드

DOI QR Code

Strength Analysis of 3D Concrete Printed Mortar Prism Samples

3D 콘크리트 프린팅된 모르타르 프리즘 시편의 강도 분석

  • Kim, Sung-Jo (Department of Civil and Environmental Engineering, Yonsei University) ;
  • Bang, Gun-Woong (Department of Civil and Environmental Engineering, Yonsei University) ;
  • Han, Tong-Seok (Department of Civil and Environmental Engineering, Yonsei University)
  • 김성조 (연세대학교 건설환경공학과) ;
  • 방건웅 (연세대학교 건설환경공학과) ;
  • 한동석 (연세대학교 건설환경공학과)
  • Received : 2022.07.04
  • Accepted : 2022.07.20
  • Published : 2022.08.31

Abstract

The 3D-printing technique is used for manufacturing objects by adding multiple layers, and it is relatively easy to manufacture objects with complex shapes. The 3D concrete printing technique, which incorporates 3D printing into the construction industry, does not use a formwork when placing concrete, and it requires less workload and labor, so economical construction is possible. However, 3D-printed concrete is expected to have a lower strength than that of molded concrete. In this study, the properties of 3D-printed concrete were analyzed. To fabricate the 3D-printed concrete samples, the extrusion path and shape of the samples were designed with Ultimaker Cura. Based on this, G-codes were generated to control the 3D printer. The optimal concrete mixing proportion was selected considering such factors as extrudability and buildability. Molded samples with the same dimensions were also fabricated for comparative analysis. The properties of each sample were measured through a three-point bending test and uniaxial compression test, and a comparative analysis was performed.

3D 프린팅은 다수의 레이어(layer)를 적층하여 물체를 제작하는 기법으로, 복잡한 형상을 가지는 물체를 비교적 쉽게 제작할 수 있다. 이를 건설 산업에 접목한 3D 콘크리트 프린팅(3D concrete printing)은 콘크리트 타설 시 거푸집을 사용하지 않으며, 비교적 적은 작업량과 인력이 요구되므로 경제적인 시공이 가능하나, 출력된 3D 프린팅 콘크리트는 일반 콘크리트 대비 다소 낮은 강도가 예상된다. 따라서, 본 연구에서는 3D 프린팅 콘크리트 시편의 물성을 분석하였다. 3D 프린팅 콘크리트 시편 출력을 위해 Ultimaker Cura 소프트웨어로 형상 및 출력 경로를 설계하고, 이를 바탕으로 3D 프린터를 제어하는 G-code를 생성하였다. 연구에서 사용된 3D 프린터의 출력 성능과 콘크리트의 적층성, 유동성 등을 고려하여 최적의 배합비를 선정하였고, 시편 출력에 활용하였다. 시편 출력 시 동일한 치수를 가지는 몰드 시편을 함께 제작하여 비교·분석에 사용하였다. 각 시편의 물성은 휨강도 시험과 압축강도 시험을 통해 각각의 강도를 측정하였고, 비교·분석하여 3D 프린팅 콘크리트 시편의 물성을 확인하였다.

Keywords

Acknowledgement

본 연구는 한국연구재단의 지원(NRF_2019R1A2C2086314, NRF_2022R1A4A1033925)의 지원을 받아 수행한 연구 과제입니다.

References

  1. Abdurman, A., Parviz, S., Faiz, M. (1996) Effect of Curing Conditions and Age on Chloride Permeability of Fly Ash Mortar, ACI Mater. J., 93(1), pp.87~95.
  2. Asprone, D., Auricchio. F., Menna. C., Mercuri, V. (2018) 3D Printing of Reinforced Copncrete Elements: Technology and Design Approach, Constr. & Build. Mater., 165, pp.218~231. https://doi.org/10.1016/j.conbuildmat.2018.01.018
  3. Gan, Z., Kafka, O., Parab, N., Zhao, C., Fang, L., Heinonen, O., Sun, T., Liu, W.K. (2021) Universal Scaling Laws of Keyhole Stability and Porosity in 3D Printing of Metals, Nature Commun., 12, Article Number: 2379.
  4. Hirsch, T., Dorn, T., Ehm, C., Stephan, D. (2020) Comparison of Printable Inorganic Binders - Key Properties for 3D Printable Materials, Second RILEM International Conference on Concrete and Digital Fabrication, 28, pp.53~63.
  5. Jay, G.S., Hehzad, N. (2019) 3D Concrete Printing Technology, Elsevier, Amsterdam, p.448.
  6. Ji, G., Xiao. J., Zhi. P., Wu, Y.C., Han, N. (2022) Effects of Extrusion Parameters on Properties of 3D Printing Concrete with Coarse Aggregates, Constr. & Build. Mater., 325, 126740.
  7. Ko, H.B., Cho, I.S., Lee, H.S. (2021) Experimental Study on the Effect of the Amount of Cellulose Type Viscosity Agent on the Physical Properties of High-Fluidity Concrete using Low-Binder, Korea Inst. Build. Constr., 21(2), pp.129~130.
  8. Lee, M.J. (1999) Study on the Factor of Water Retention Capacity of Cement Mortar by Hydroxyalkyl Methylcellulose Ether, J. Korea Concr. Inst., 34(2), pp.153~160.
  9. Mohan, M.K., Rahul, A.V., Schutter, G.D., Tittelboom, K.V. (2021) Effects of Extrusion Parameters on Properties of 3D Printing Concrete with Coarse Aggregates, Constr. & Build. Mater., 325, 126740.
  10. Safwan, A.K., Mohamed, N.A.Z. (1994) Characteristics of Silica-Fume Concrete, J. Mater. Civil Eng., 6(3), pp.357~375. https://doi.org/10.1061/(ASCE)0899-1561(1994)6:3(357)
  11. Steven, J.S., Jenee, A.J., Andrew, J.H., Justin, D.D. (2021) A Systematic Review and Analysis of the Viability of 3D-Printed Construction in Remote Environment, Autom. Constr., 125, 103642.
  12. Theo, A.M.S., Zeeshan, Y.A., Freek, P.B., Hans, L.M.L. (2018) Design of a 3D Printed Concrete Bridge by Testing, Virtual & Phys. Prototyp., 13(3), pp.222~236. https://doi.org/10.1080/17452759.2018.1476064
  13. Ultimaker, C. (2021) Online Documentation Help, Ultimaker Support: Software.
  14. Xiao, J., Ji. G., Zhang, Y., Ma, G., Mechtcherine, V., Pan, J. Wang, L., Ding, T., Duan, Z., Du, S. (2021) Large-Scale 3D Printing Concrete Technology: Current Status and Future Opportunities, Cement & Concr. Compos., 122, 104115.
  15. Yan, Q., Dong, H., Su, J., Han, J., Song, B., Wei, Q., Shi, Y. (2018) A Review of 3D Printing Technology for Medical Applications, Eng., 4(5), pp.729~742. https://doi.org/10.1016/j.eng.2018.07.021