• Title/Summary/Keyword: 4$^{\circ}C$ pretreatment

Search Result 319, Processing Time 0.025 seconds

Improved Ethanol Production from Deacetylated Yellow Poplar (Liriodendron tulipifera) by Detoxification of Hydrolysate and Semi-SSF (에탄올 향상을 위한 탈아세틸화 백합나무 당화액의 발효저해물질 제거와 semi-동시당화발효)

  • Kim, Jo-Eun;Lee, Jae-Won
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.494-500
    • /
    • 2016
  • In order to remove acetyl group from yellow poplar, deacetylation was performed using sodium hydroxide (NaOH) prior to oxalic acid pretreatment. During the deacetylation ($60^{\circ}C$ for 80 min, 0.8% NaOH), most of the acetyl group were removed from hemicellulose. Simultaneous saccharification and fermentation (SSF) and semi-SSF were carried out based on solid loading (10, 12.5, 15%) of deacetylated biomass and pre-hydrolysis with enzymes (0, 6, 12, 24 h). The highest ethanol was obtained as 26.73 g/L after 120 h when 10% of biomass was used for SSF. It is corresponding to 88.41% of theoretical ethanol yield. At the 12.5% and 15% of biomass loading, the highest ethanol was obtained from 6 h pre-hydrolysis. It was 32.34 g/L and 27.15 g/L, respectively, and corresponding to ethanol yield of 85.58 and 59.87%. In order to remove fermentation inhibitors from hydrolysates, overliming was performed using calcium hydroxide ($Ca(OH)_2$). The highest ethanol was 5.28 g/L after 72 h of fermentation.

Evaluation of Bioethanol Productivity from Sorghum × Sudangrass Hybrid for Cellulosic Feedstocks (셀룰로오스계 원료작물로서 수수-수단그래스 교잡종의 바이오에탄올 생산량 평가)

  • Cha, Young-Lok;Moon, Youn-Ho;Koo, Bon-Cheol;Ahn, Jong-Woong;Yoon, Young Mi;Nam, Sang-Sik;Kim, Jung Kon;An, Gi Hong;Park, Kwang-Geun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.1
    • /
    • pp.71-77
    • /
    • 2013
  • The world demand of renewable bioenergy as an alternative transportation fuel is greatly increasing. Research for bioethanol production is currently being progressed intensively throughout the world. Therefore it will be necessary to develop bioethanol production with cellulosic materials. In this study, the yield of ethanol production was evaluated by simultaneous saccharification and fermentation (SSF) using sodium hydroxide pretreated sorghum ${\times}$ sudangrass hybrids. Composition analysis of 11 varieties of sorghum ${\times}$ sudangrass hybrids was performed for selection of excellent variety to efficiently produce bioethanol. The content of cellulose, hemicellulose, lignin and ash of these varieties were 32~39%, 19~24%, 17~22% and 6~11%, respectively. Among these varieties, 4 varieties of sorghum ${\times}$ sudangrass hybrids were selected for the evaluation of ethanol yield and those were pretreated with 1 M NaOH solution at $150^{\circ}C$ for 30 min using high temperature explosion system. After pretreatment, samples were neutralized with tap water. It contained 52~57% of cellulose. Simultaneous saccharification and fermentation (SSF) was carried out for 48 h at $33^{\circ}C$ by Saccharomyces cerevisiae CHY1011 using Green star variety. The yield of ethanol was 92.4% and the amount of ethanol production was estimated at 6206 L/ha.

Effect of Sodiun Hypochlorite Pretreatment, Light Intensity and Depth of Soil Covering on Germination of Cattail(Typha spp.) Seeds (Sodium Hypochlorite 처리와 광도 및 복토 깊이의 차이가 부들의 종자 발아에 미치는 영향)

  • Kim Young-Ju;Heo Jin-Ah;Hwang Yong-Soo;Ku Ja-Hyeong
    • Asian Journal of Turfgrass Science
    • /
    • v.19 no.2
    • /
    • pp.115-123
    • /
    • 2005
  • The effect of sodium hypochlorite treatment on the germination of cattail (Typha spp.) seeds was investigated in growth chambers maintained on a 14-h photoperiod with various temperatures and light intensities. Germination rates of seeds were, in general, enhanced by the increase of light intensity and temperature regardless of cattail species. Seeds of T. oreientalis had 4.3, 13.0 and $7.3\%$ germination at temperatures of 20, 25 and $30^{circ}$C, respectively, under light intensity of 7.5${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. T. angustata showed higher germination rate, thus, 10.7, 22.7 and $50.7\%$ under same temperature and light environment. Under high light intensity of 79.5${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, the germination rates of T. oreintalis and T angustata were $78.3\%$ and $88.7\%$ at $30^{circ}$C, respectively. Scarification of seeds with NaOC1 ($4\%$, available chlorine) increased germination rate in both species, especially even at low temperature of $20^{circ}$C. Germination speed was also enhanced by NaOC1 treatment. High light intensity further increased the germination rate. When NaOC1 treated seeds were sowed on the soil surface in plastic house, the seedling emergence was nearly $100\%$. Untreated seeds of T. oreintalis and T. angustara showed 40 and $50\%$, respectively, in germination under same condition. However, when the depth of soil covering was over 1.0 cm, seedling emergence was retarded more than 1 month. On the process of seedling development, emergence of mesocoty1 occurred firstly and after than primary root and first leaf were developed on the end of elongated mesocotyl. These results suggest that the promotion of seed germination by NaOC1 pretreament may be induced from the increase of light absorptivity as well as water permeability through scarifying and bleaching the seed coat.

The experiment of process efficiency and salt elimination in food waste compost using triple salt (삼중염을 이용한 음식물 쓰레기 퇴비 중 염분제거 및 공정효율화 실험)

  • Kim, Nam-Cheon;Jang, Byung-Man
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.2
    • /
    • pp.83-90
    • /
    • 2006
  • The NaCl contents of food waste composts made by various techniques known up to now were under the level of 1% by fresh weight basis. But these techniques has some problem that is environment pollution from treated water and high equipment cost. The application to agricultural land of food waste compost that is not sufficiently removed NaCl was considered to be improper due to salt accumulation in soils and plant growth inhibition by salt stress. The purpose of this study is to decompose NaCl in food waste compost using triple salt and this method is differ from existing chemical method. Also, reaction of NaCl with triple salt produced KCl that is basic material of potassium fertilizer. Moreover Also, there was temperature rise of average $5^{\circ}C$ as result that apply triple salt in food waste 600 ton in food wast composting productive capacity. Obvious odious smell reduction effect appeared pretreatment process and fermentation process with temperature rise and this is because triple salt activation of aerobe and removes odious smell cause material by salt content decrease effectively.

  • PDF

Organic Acid and Enzyme Pretreatment of Laminaria japonica for Bio-ethanol Production (유기산 및 효소적 전처리를 이용한 다시마에서 바이오 에탄올 생산)

  • Lee, Sung-Mok;Lee, Jae-Hwa
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.164-168
    • /
    • 2012
  • We investigated for the production of biological bio-ethanol from Laminaria japonica using the hydrolysis reaction of enzymes and organic acids and the polysaccharide content was also analyzed. The composition of the polysaccharide was characterized as 65.99% alginate, 6.24% laminaran and 27.77% mannitol. The optimum concentration for reducing the sugar conversion by Laminaria japonica was found to be 1.874 g/L at an acetic acid concentration of 1.5%, $121^{\circ}C$ for 60 min, and for an ascorbic acid of 2.0%, 4.291 g/L was produced in the same condition. The enzyme hydrolysis such as alginate lyase and laminarinase contained the maximum 2.219 g/L reducing sugar. In the result of ethanol fermentation using hydrolysate of Laminaria japonica, the organic acid treatment showed a high of reducing sugar yield, but decreased the ethanol yield, and then the maximum ethanol production obtained was 1.26 g/L using the mixed treated of enzyme.

Quality and characteristics of ginseng seed oil treated using different extraction methods

  • Lee, Myung-Hee;Kim, Sung-Soo;Cho, Chang-Won;Choi, Sang-Yoon;In, Gyo;Kim, Kyung-Tack
    • Journal of Ginseng Research
    • /
    • v.37 no.4
    • /
    • pp.468-474
    • /
    • 2013
  • Ginseng seed oil was prepared using compressed, solvent, and supercritical fluid extraction methods of ginseng seeds, and the extraction yield, color, phenolic compounds, fatty acid contents, and phytosterol contents of the ginseng seed oil were analyzed. Yields were different depending on the roasting pretreatment and extraction method. Among the extraction methods, the yield of ginseng seed oil from supercritical fluid extraction under the conditions of 500 bar and $65^{\circ}C$ was the highest, at 17.48%. Color was not different based on the extraction method, but the b-value increased as the roasting time for compression extraction was increased. The b-values of ginseng seed oil following supercritical fluid extraction were 3.54 to 15.6 and those following compression extraction after roasting treatment at $200^{\circ}C$ for 30 min, were 20.49, which was the highest value. The result of the phenolic compounds composition showed the presence of gentisic acid, vanillic acid, ferulic acid, and cinnamic acid in the ginseng seed oil. No differences were detected in phenolic acid levels in ginseng seed oil extracted by compression extraction or solvent extraction, but vanillic acid tended to decrease as extraction pressure and temperature were increased for seed oil extracted by a supercritical fluid extraction method. The fatty acid composition of ginseng seed oil was not different based on the extraction method, and unsaturated fatty acids were >90% of all fatty acids, among which, oleic acid was the highest at 80%. Phytosterol analysis showed that ${\beta}$-sitosterol and stigmasterol were detected. The phytosterol content of ginseng seed oil following supercritical fluid extraction was 100.4 to 135.5 mg/100 g, and the phytosterol content following compression extraction and solvent extraction was 71.8 to 80.9 mg/100 g.

Interfacial Adhesion and Reliability between Epoxy Resin and Polyimide for Flexible Printed Circuit Board (연성인쇄회로기판의 에폭시수지와 폴리이미드 사이의 계면접착력 및 신뢰성 평가)

  • Kim, Jeong-Kyu;Son, Kirak;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.75-81
    • /
    • 2017
  • The effects of KOH pretreatment and annealing conditions on the interfacial adhesion and the reliability between epoxy resin and polyimide substrate in the flexible printed circuit board were quantitatively evaluated using $180^{\circ}$ peel test. The initial peel strength of the polyimide without the KOH treatment was 29.4 g/mm and decreased to 10.5 g/mm after 100hrs at $85^{\circ}C/85%$ R.H. temperature/humidity treatment. In case of the polyimide with annealing after KOH treatment, initial peel strength was 29.6 g/mm and then maintained around 27.5 g/mm after $85^{\circ}C/85%$ R.H. temperature/humidity treatment. Systematic X-ray photoelectron spectroscopy analysis results showed that the peel strength after optimum annealing after KOH treatment was maintained high not only due to effective recovery of the polyimide damage by the polyimide surface treatment process, but also effective removal of metallic ions and impurities during various wet process.

Effects of Several Pre-treatments on Seed Germination or Sophora japonica L. (회화나무 종자발아에 미치는 전처리의 효과)

  • Tak, Woo-Sik;Kim, Tae-Su;Choi, Chung-Ho
    • Korean Journal of Plant Resources
    • /
    • v.19 no.5
    • /
    • pp.580-585
    • /
    • 2006
  • This experiment was conducted to study the effects of sulphuric acid, cutting, cold stratification and hot water on the germination of Sophora japonica seeds, which have difficulty to germinate because they have hard and thick seed coats. The seeds were immersed in 30, 60 and 90% sulphuric acid for 30 minutes as seed scarifications, and cut 1/8, 2/8 and 3/8 of the opposite parts of radicles. As cold stratification the seeds were wrapped in wet towel, and then stored in plastic bags in a refrigerator $(4^{\circ}C)$ for 3, 5 and 10 days. The seeds were immersed in hot water $(90{\sim}95^{\circ}C)$ for 2,5 and 10 minutes. Pretreated seeds represented different germination properties, respectively. After sulphuric acid treatment, the seeds showed an increase in germination (G) and germination index (GI). Compared to the other treatments, 90% sulphuric acid showed the highest G (31.7%) and GI (6.2). The G and GI of cut seeds decreased with the increase of seed cutting lengths. And G and GI of cold stratificated seeds were not significantly different among the days treated (p=0.258). Two minutes treatment of hot water showed lower G and Gl than control, and the seeds were not germinated in 5 and 10 minutes treatments of hot water. At the result of relative growth rate and T/R ratio of seedlings from pretreated seeds, the seedlings from seeds in 90% sulphuric acid treatment represented the highest relative growth rate and T/R ratio.

Effects of High-Hydrostatic Pressure on Ginsenoside Concentrations in Korean Red Ginseng

  • Kim, Sun-Ok;Park, Chan-Woong;Moon, Sang-Young;Lee, Hyun-A;Kim, Byong-Ki;Lee, Dong-Un;Lee, Jae-Ho;Park, Ji-Yong
    • Food Science and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.848-853
    • /
    • 2007
  • The effects of high-hydrostatic pressure (HHP) on the ginsenoside concentration in Korean red ginseng were investigated. HHP-pretreated Korean red ginseng samples were compared to samples produced by a conventional method. Six-year-old Korean fresh ginseng (Panax ginseng C.A. Meyer) samples were vacuum-packaged in polyethylene film and treated at room temperature for 1 min with HHP (200-600 MPa) and steamed at $98^{\circ}C$ for 3 hr. Major ginsenosides of red ginseng were analyzed by HPLC. HHP-pretreated red ginseng showed a 45% higher level of total major ginsenosides than conventionally prepared red ginseng. The levels of 4 protopanaxadiol-type ginsenosides increased 34-43% and the levels of 5 protopanaxatriol-type ginsenosides increased 45-66%. Scanning electron microscopy and electrical conductivity spectrum analysis showed that HHP pretreatment damaged ginseng plant cells and increased extraction efficiencies of ginsenosides from red ginseng products.

Optimal Conditions for the Post-Harvest Storage of Rhizoids of the Brown Seaweed Undaria pinnatifida (Phaeophyta) for Arachidonic Acid Production

  • Khan, Mohammed Nurul Absar;Kang, Ji-Young;Park, Nam-Gyu;Choi, Jae-Suk;Cho, In-Soon;Hong, Yong-Ki
    • Fisheries and Aquatic Sciences
    • /
    • v.15 no.2
    • /
    • pp.163-168
    • /
    • 2012
  • The non-utilized biomass of the aquacultured seaweed Undaria pinnatifida, particularly the rhizoid, is an alternative source of arachidonic acid (AA). Of the five aquacultured kelps that were tested, U. pinnatifida yielded the highest amount of AA, which was isolated from the rhizoids. Its identity (C20:4 n-6) was confirmed from gas chromatography-mass spectrometry spectral data. The optimal conditions for post-harvest storage or pretreatment of the rhizoids in Provasoli's enriched seawater for AA extraction were determined to be pH 7.8, 2% $CO_2$-enriched air, 20 ${\mu}mol\;m^{-2}\;s^{-1}$ light, and $10^{\circ}C$. Under these conditions, the AA content after 1 day of storage was enhanced by up to 127%. In the absence of light under ambient aeration, the AA content after 1 day of storage diminished to 90%. Rhizoids collected late in the season (April and May) contained the highest amounts of AA (approximately 2.5 mg/g tissue).