Organic Acid and Enzyme Pretreatment of Laminaria japonica for Bio-ethanol Production

유기산 및 효소적 전처리를 이용한 다시마에서 바이오 에탄올 생산

  • Lee, Sung-Mok (Department of Bioscience and Biotechnology, College of Medical and Life Science, Silla University) ;
  • Lee, Jae-Hwa (Department of Bioscience and Biotechnology, College of Medical and Life Science, Silla University)
  • 이성목 (신라대학교 의생명과학대 생명공학과) ;
  • 이재화 (신라대학교 의생명과학대 생명공학과)
  • Published : 2012.04.10

Abstract

We investigated for the production of biological bio-ethanol from Laminaria japonica using the hydrolysis reaction of enzymes and organic acids and the polysaccharide content was also analyzed. The composition of the polysaccharide was characterized as 65.99% alginate, 6.24% laminaran and 27.77% mannitol. The optimum concentration for reducing the sugar conversion by Laminaria japonica was found to be 1.874 g/L at an acetic acid concentration of 1.5%, $121^{\circ}C$ for 60 min, and for an ascorbic acid of 2.0%, 4.291 g/L was produced in the same condition. The enzyme hydrolysis such as alginate lyase and laminarinase contained the maximum 2.219 g/L reducing sugar. In the result of ethanol fermentation using hydrolysate of Laminaria japonica, the organic acid treatment showed a high of reducing sugar yield, but decreased the ethanol yield, and then the maximum ethanol production obtained was 1.26 g/L using the mixed treated of enzyme.

본 연구는 갈조류인 다시마의 당 성분 함량에 대한 분석과 효소 및 유기산 가수분해물을 이용한 생물학적 바이오 에탄올 생산에 대해 연구하였다. HPLC를 이용한 당 성분 분석 결과 alginate가 total sugar의 65.99%로 가장 많은 것으로 확인되었으며, laminaran과 mannitol이 각각 6.24, 27.77%로 나타났다. 1.5% acetic acid를 이용하여 $121^{\circ}C$, 60 min 동안 가수분해 결과 최대 1.874 g/L의 환원당이 생성되었으며, ascorbic acid의 경우 2.0%에서 최대 4.291 g/L의 환원당이 생성되는 것으로 나타났다. Alginate lyase와 laminarinase와 같은 효소를 이용한 가수분해에서 환원당 생성량은 최대 2.219 g/L였다. 다시마 가수분해물을 이용한 에탄올 발효 결과 유기산을 처리했을 때에는 에탄올 생산량이 오히려 감소하는 것으로 나타났으며, alginate lyase와 laminarinase를 혼합처리 했을 때 에탄올 생산량이 1.26 g/L로 가장 높았다.

Keywords

References

  1. J.-I. Park, H.-C. Woo, and J.-H. Lee, Korean Chem. Eng. Res., 46, 833 (2008).
  2. S.-M. Lee, J.-H. Kim, H.-Y. Cho, H. Joo, and J.-H. Lee, J. Korean Ind. Eng. Chem., 20, 517 (2009).
  3. M. Balat and H. Balat, Applied Energy., 86, 2273 (2009). https://doi.org/10.1016/j.apenergy.2009.03.015
  4. N. E. Tolbert, Regulation of atmospheric $CO_2$ and $O_2$ by photosynthetic Carbon Metabolism, ed. J. Preiss, 8, Oxford University Press, Oxford (1994).
  5. J.-R. Do, Y.-J. Nam, J.-H. Park, and J.-H. Jo, J. Kor. Fish. Soc., 30, 428 (1997).
  6. A. Hirano, R. Ueda, S. Hirayama, and Y. Ogushi, Energy, 22, 137 (1997). https://doi.org/10.1016/S0360-5442(96)00123-5
  7. B. C. Saha and M. A. Cotta, Enzyme Microb. Technol., 41, 528 (2007). https://doi.org/10.1016/j.enzmictec.2007.04.006
  8. B. Hahn-Hagerdal, M. Galbe, M. F. Gorwa-Grauslund, G. Liden, and G. Zacchi, Trends Biotechnol., 24, 549 (2006). https://doi.org/10.1016/j.tibtech.2006.10.004
  9. Renewable Global Status Report. Renewable energy network for the 21st century (REN21). Washington, DC: Worldwatch Institute Paris, REN21 Secretariat (2009).
  10. J.-H. Kim, D.-S. Byun, J. S. Godber, J.-S. Choi, W.-C. Choi, and H.-R. Kim, Appl Microbiol. Biotechnol., 63, 553 (2004). https://doi.org/10.1007/s00253-003-1463-8
  11. H.-I. Kang, M.-S. Ko, H.-J. Kim, S.-W. Kim, and T.-J. Bae, J. Kor. Fish. Soc., 29, 716 (1996).
  12. S. A. Lee, J. U. Kim, J. G. Jung, I. H. Kim, S. H. Lee, S. J. Kim, and J. H. Lee, Kor. J. Biotechnol. Bioeng., 21, 389 (2006).
  13. Y.-H. Park, Bull. Korean Fish. Soc., 2, 71 (1969).
  14. S.-M. Lee and J.-H. Lee, Appl. Chem. Eng., 21, 154 (2010).
  15. D. B. Choi, H. S. Sim, Y. L. Piao, W. Ying, and H. Cho, J. Ind. Eng. Chem., 15, 12 (2009). https://doi.org/10.1016/j.jiec.2008.08.004