Effect of Sodiun Hypochlorite Pretreatment, Light Intensity and Depth of Soil Covering on Germination of Cattail(Typha spp.) Seeds

Sodium Hypochlorite 처리와 광도 및 복토 깊이의 차이가 부들의 종자 발아에 미치는 영향

  • Kim Young-Ju (Department of Horticulture, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Heo Jin-Ah (Department of Horticulture, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Hwang Yong-Soo (Department of Horticulture, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Ku Ja-Hyeong (Department of Horticulture, College of Agriculture and Life Sciences, Chungnam National University)
  • 김영주 (충남대학교 농업생명과학대학 원예학과) ;
  • 허진아 (충남대학교 농업생명과학대학 원예학과) ;
  • 황용수 (충남대학교 농업생명과학대학 원예학과) ;
  • 구자형 (충남대학교 농업생명과학대학 원예학과)
  • Published : 2005.12.01

Abstract

The effect of sodium hypochlorite treatment on the germination of cattail (Typha spp.) seeds was investigated in growth chambers maintained on a 14-h photoperiod with various temperatures and light intensities. Germination rates of seeds were, in general, enhanced by the increase of light intensity and temperature regardless of cattail species. Seeds of T. oreientalis had 4.3, 13.0 and $7.3\%$ germination at temperatures of 20, 25 and $30^{circ}$C, respectively, under light intensity of 7.5${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. T. angustata showed higher germination rate, thus, 10.7, 22.7 and $50.7\%$ under same temperature and light environment. Under high light intensity of 79.5${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, the germination rates of T. oreintalis and T angustata were $78.3\%$ and $88.7\%$ at $30^{circ}$C, respectively. Scarification of seeds with NaOC1 ($4\%$, available chlorine) increased germination rate in both species, especially even at low temperature of $20^{circ}$C. Germination speed was also enhanced by NaOC1 treatment. High light intensity further increased the germination rate. When NaOC1 treated seeds were sowed on the soil surface in plastic house, the seedling emergence was nearly $100\%$. Untreated seeds of T. oreintalis and T. angustara showed 40 and $50\%$, respectively, in germination under same condition. However, when the depth of soil covering was over 1.0 cm, seedling emergence was retarded more than 1 month. On the process of seedling development, emergence of mesocoty1 occurred firstly and after than primary root and first leaf were developed on the end of elongated mesocotyl. These results suggest that the promotion of seed germination by NaOC1 pretreament may be induced from the increase of light absorptivity as well as water permeability through scarifying and bleaching the seed coat.

부들종자는 종간에 차이가 없이 $20^{circ}$C에 비해 $25^{circ}$C와 $30^{circ}$C에서 더 높은 발아율을 보였고, 약광하에서 보다 강 광하에서 높은 발아율을 보였다. 발아 온도 20, 25, $30^{circ}$C에서 무처리 종자의 발아율은 가장 낮은 광도인 $7.5{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ 에서 좀부들이 각각 4.3, 13.0, $7.3\%$였고, 애기부들 10.7, 22.7, $50.7\%$였다. 이에 비해 가장 높은 광도인 79.5${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$에서는 발아온도가 $30^{circ}$C일 경우에 좀부들은 $78.3\%$, 애기부들은 $88.7\%$의 높은 발아율을 보였다. NaOC1용액($4\%$ available chlorine) 처리는 낮은 온도 및 약 광에서의 발아를 크게 촉진시켰으며 발아시간을 단축시켰다. 무처리 종자의 경우 온도가 높아질수록 낮은 광도에서 발아율이 더 높아졌고 온도가 높아질수록 짧은 시간의 NaOC1 처리로 높은 발아율을 얻을 수 있었다. NaOC1 처리된 종자는 좀부들과 애기부들 모두 흙 표면 위에서 $100\%$의 발아율을 보였으나 무처리 종자는 각각 $40\%$$50\%$의 발아율 보였다. 복토깊이가 1cm 이상이 되면 1개월 이상 발아가 진행되지 않았다. 종자발아 과정은 중경이 먼저 길게 나온 다음, 중경 끝에서 초엽과 주근이 발생하고 다음으로 측근이 발생되는 양상을 보였다. 부들류의 종자에 있어서 NaOC1 처리에 의한 발아촉진 효과는 종피의 탈색과 부식으로 인한 광흡수의 증대에서 기인되는 것으로 추측된다.

Keywords

References

  1. Apfelbaum, S.I. 2002. Cattail(Typha spp.) management. http//www.appliedeco. com /Project/ Cattailmanage.pdf
  2. Bankston, J.L. and C.B. Clarke. 1977. Edible and useful plants of California. Univ. Cal. Press
  3. Ciria, M.P., M.L. Solano, and P. Soriano. 2005. Role of macrophyte Typha latifolia m a constructed wetland for wastewater treatment and assessment of its potential as a biomass fuel. Biosystems Engineering 92:535-544 https://doi.org/10.1016/j.biosystemseng.2005.08.007
  4. Drew, R.L.K. and P.A. Brocklehurst. 1984. The effect of sodium hypochlorite on germination of lettuce seed at high temperature. J. Exp. Botany 35:975-985 https://doi.org/10.1093/jxb/35.7.975
  5. Dubbe, D.R, E.G. Garver, and D.C. Pratt. 1988. Production of cattail (Typha spp.) biomass in Minnesota, USA. Biomass 17:79-104 https://doi.org/10.1016/0144-4565(88)90073-X
  6. Goulet, RR and F.R Pick. 2001. The effect of cattails(Typha latifolia) on concentrations and partitioning of metals m surficial sediments of surface-flow constructed wetland. Water, Air, Soil Poll. 132:275-291 https://doi.org/10.1023/A:1013246614159
  7. Harrington, B.D. 1972. Western edible wild plants. The Univ. New Mexico Press
  8. Hsiao, A.I. and W.A. Quick. 1984. Action of sodium hypochlorite and hydrogen peroxide on seed dormancy and germination of wild oat, Avena fatua L. Weed Research 24:411-419 https://doi.org/10.1111/j.1365-3180.1984.tb00604.x
  9. Hsiao, A.I., A.D. Worsham, and D.E. Moreland. 1981. Effects of sodium hypochlorite and certain growth regulators on germination of witchweed(Striga asitica) seeds. Weed Sci. 29:98-100
  10. Haynes, J.R., W.G. Pill, and T.A. Evans. 1997. Seed treatments improve the germination and seedling emergence of switchgrass(Panicum virgatum L.). HortScience 32: 1222-1226
  11. Im, R.J. 1998. Flora Medica Coreana. Vol 2. Agr. Pub. House. Pyongyang. Korea
  12. Ku, J.H., T.I. Kim, and D.W. Jun. 1996. Effect of sodium hypochlorite treatment on germination of spinach seeds. Kor. Soc. Hort. Sci. 37:357-361
  13. Ku, J.H. and J.W. Song. 2002. Effect of sodium hypochloite on seed germination of Typha orientalis Presl. J. Environ. Sci. Tech. 20:50-55
  14. Lee, Y.N. 1996. Flora of Korea. Kyohak Pub. Co., Ltd. Seoul, Korea
  15. Murphy, E.V.A. 1959. Indian uses of native plants. Univ. Cal. Press
  16. Ponzio, K.L. 1998. Effects of various treatments on the germination of sawgrass, Cladium jamaicense Cranz, seeds. Wetlands 18:51-58 https://doi.org/10.1007/BF03161442
  17. Reuter, J.E., T.Djohan, and C.R Goldman. 1992. The use of wetlands for nutrient removal from surface runoff in a cold climate region of California results from a newly constructed wetland at Lake Tahoe. J. Environ. Manage. 36:35-53 https://doi.org/10.1016/S0301-4797(05)80100-8
  18. Smith, S.G. 1967. Expeimental and natural hybrid in North America Typha (Typhaceae). The Amer. Mid. Nat. 78:257-287 https://doi.org/10.2307/2485231
  19. Sojda, RS. and K.L. Solberg. 1993. Management and control of cattails. Waterfowl Management Handbook. Fish and Wildlife Leaflet 13.4.13. http//www.mesc.usgs. goy/produces/000/pdf