Browse > Article

Organic Acid and Enzyme Pretreatment of Laminaria japonica for Bio-ethanol Production  

Lee, Sung-Mok (Department of Bioscience and Biotechnology, College of Medical and Life Science, Silla University)
Lee, Jae-Hwa (Department of Bioscience and Biotechnology, College of Medical and Life Science, Silla University)
Publication Information
Applied Chemistry for Engineering / v.23, no.2, 2012 , pp. 164-168 More about this Journal
Abstract
We investigated for the production of biological bio-ethanol from Laminaria japonica using the hydrolysis reaction of enzymes and organic acids and the polysaccharide content was also analyzed. The composition of the polysaccharide was characterized as 65.99% alginate, 6.24% laminaran and 27.77% mannitol. The optimum concentration for reducing the sugar conversion by Laminaria japonica was found to be 1.874 g/L at an acetic acid concentration of 1.5%, $121^{\circ}C$ for 60 min, and for an ascorbic acid of 2.0%, 4.291 g/L was produced in the same condition. The enzyme hydrolysis such as alginate lyase and laminarinase contained the maximum 2.219 g/L reducing sugar. In the result of ethanol fermentation using hydrolysate of Laminaria japonica, the organic acid treatment showed a high of reducing sugar yield, but decreased the ethanol yield, and then the maximum ethanol production obtained was 1.26 g/L using the mixed treated of enzyme.
Keywords
bio-ethanol; alginate lyase; laminarinase; Laminaria japonica;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 J.-I. Park, H.-C. Woo, and J.-H. Lee, Korean Chem. Eng. Res., 46, 833 (2008).
2 S.-M. Lee, J.-H. Kim, H.-Y. Cho, H. Joo, and J.-H. Lee, J. Korean Ind. Eng. Chem., 20, 517 (2009).
3 M. Balat and H. Balat, Applied Energy., 86, 2273 (2009).   DOI   ScienceOn
4 N. E. Tolbert, Regulation of atmospheric $CO_2$ and $O_2$ by photosynthetic Carbon Metabolism, ed. J. Preiss, 8, Oxford University Press, Oxford (1994).
5 J.-R. Do, Y.-J. Nam, J.-H. Park, and J.-H. Jo, J. Kor. Fish. Soc., 30, 428 (1997).
6 A. Hirano, R. Ueda, S. Hirayama, and Y. Ogushi, Energy, 22, 137 (1997).   DOI   ScienceOn
7 B. C. Saha and M. A. Cotta, Enzyme Microb. Technol., 41, 528 (2007).   DOI   ScienceOn
8 B. Hahn-Hagerdal, M. Galbe, M. F. Gorwa-Grauslund, G. Liden, and G. Zacchi, Trends Biotechnol., 24, 549 (2006).   DOI   ScienceOn
9 Renewable Global Status Report. Renewable energy network for the 21st century (REN21). Washington, DC: Worldwatch Institute Paris, REN21 Secretariat (2009).
10 J.-H. Kim, D.-S. Byun, J. S. Godber, J.-S. Choi, W.-C. Choi, and H.-R. Kim, Appl Microbiol. Biotechnol., 63, 553 (2004).   DOI   ScienceOn
11 H.-I. Kang, M.-S. Ko, H.-J. Kim, S.-W. Kim, and T.-J. Bae, J. Kor. Fish. Soc., 29, 716 (1996).
12 S. A. Lee, J. U. Kim, J. G. Jung, I. H. Kim, S. H. Lee, S. J. Kim, and J. H. Lee, Kor. J. Biotechnol. Bioeng., 21, 389 (2006).
13 Y.-H. Park, Bull. Korean Fish. Soc., 2, 71 (1969).
14 S.-M. Lee and J.-H. Lee, Appl. Chem. Eng., 21, 154 (2010).
15 D. B. Choi, H. S. Sim, Y. L. Piao, W. Ying, and H. Cho, J. Ind. Eng. Chem., 15, 12 (2009).   DOI   ScienceOn