• Title/Summary/Keyword: 3T3-L1 adipocyte differentiation

Search Result 276, Processing Time 0.021 seconds

Water Extracts of Paecilomyces tenuipes Inhibit Cathepsin S-induced Adipocyte Differentiation in 3T3-L1 Cells

  • Myoung, Kil-Sun;Lee, Jung-Hee;Lim, Kwang-Sei;Huh, Chul-Sung
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.84-88
    • /
    • 2009
  • Cathepsin S is a cysteine protease that affects extracellular matrix remodeling. Recently, several studies have reported that cathepsin S is involved in obesity. Both mouse and human adipose cells produce this enzyme in the early phase of adipocyte differentiation, where it degrades fibronectin. Cathepsin S gene expression is elevated in the adipose tissue of obese mice as compared to that of lean mice. Paecilomyces tenuipes water extracts (PTW) are shown to have an inhibitory effect on cathepsin S activity. In this study, Z-Val-Val-Arg-MCA was used as a cathepsin S-specific substrate in order to examine inhibitory effect of PTW. Supplementing 3T3-L1 cell media with PTW clearly reduced lipid droplet accumulation and cathepsin S-induced adipogenesis. Furthermore, PTW decreased weight gain, subcutaneous adipose tissue growth, the level of serum triglyceride, and total cholesterol in mice fed a high-fat diet. These data suggest that PTW work against adipose cathepsin S and presumably contribute to anti-obese activities.

Suppressive Effects of By-Product Extracts from Soybean on Adipocyte Differentiation and Expression of Obesity-Related Genes in 3T3-L1 Adipocytes (대두부산물의 지방세포분화 유도유전자의 발현저해 및 전지방세포 분화 억제 효과)

  • Choi, Mi-Sun;Kim, Jee-In;Jeong, Jin-Boo;Lee, Su-Bok;Jeong, Jae-Nam;Jeong, Hyung-Jin;Seo, Eul-Won;Kim, Taek-Yoon;Kwon, Oh-Jun;Lim, Jae-Hwan
    • Journal of Life Science
    • /
    • v.21 no.3
    • /
    • pp.358-367
    • /
    • 2011
  • Soybean is known to contain various phytochemicals that are related to anti-oxidant, anti-inflammatory and anti-obesity effects in mice and humans. The anti-obesity effect of by-product extracts from soybean on the differentiation of 3T3-L1 pre-adipocytes to adipocytes was investigated by suppressing adipocyte differentiation and lipid accumulation with Oil Red-O assay and quantitative PCR. In inducing differentiation of 3T3-L1 pre-adipocytes in the presence of an adipogenic cocktail, isobutylmethylanthine (IBMX), dexamathasone, and insulin, treatment with filtrated soybean soaked water, soybean milk, and soycurd residue from soybean curd processing significantly decreased mRNA expression of obesity-related gene such as PPAR${\gamma}$, Fabp4, and Scd1, adipsin, apolipoprotein (APOE) and adiponectin (ADIPOQ) without any significant cytotoxicity. We also determined the well-known isoflavones in soybean, such as daidzein and genistein, in the by-product extracts. Taken together, we suggest that soybean by-product extract showed anti-obesity effect by suppressing adipocyte related gene expression, and that by-products collected during soybean curd processing may be a good candidate as an ingredient in health care products.

Anti-Obesity Effects of Fermented Soybean Oils in 3T3-L1 Pre-Adipocytes and High Fat Diet-Fed C57BL/6J Mice (발효콩 유지의 3T3-L1 지방전구세포와 고지방식이를 급여한 C57BL/6J 생쥐에 대한 항비만 효과)

  • Kim, Seon-Woong;Kim, Nam-Seok;Oh, Mi-Jin;Kim, Ha-Rim;Kim, Min-Sun;Lee, Da-Young;Yoon, Suk-Hoo;Jung, Mun-Yhung;Kim, Hun-Jung;Lee, Chang-Hyun;Oh, Chan-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.3
    • /
    • pp.279-288
    • /
    • 2017
  • This study investigated the manufacturing of fermented soybean oil using a fermenting strain commonly processed for soybeans [Bacillus amyloliquefaciens (BA), Bacillus subtilis (BS), Lactobacillus acidophilus (LBA), and B. subtilis+L. acidophilus (BLO)] and evaluated its anti-obesity activities. Cytotoxicity of four kinds of fermented soybean oils was not observed in 3T3-L1 preadipocytes at 10 and $50{\mu}g/mL$. Triglyceride content was reduced by 20.6% in the BLO group at a treatment concentration of $50{\mu}g/mL$. The simultaneous treatment of fermented soybean oil and differentiation induction medium decreased $PPAR{\gamma}$ and $C/EBP{\alpha}$ gene expression at a concentration of $50{\mu}g/mL$ and blocked adipocyte differentiation by increasing adiponectin gene expression. The inhibitory effect of adipocyte differentiation was greatest in the BLO group. C57BL/6J mice were examined for 4 weeks after being separated into seven groups [normal diet group (N), high fat diet group (C), group fed high fat diet combined with regular soybean oil (SO), group fed non-fermented soybean oil (NF), and groups fed high fat diet combined with 5% fermented soybean oil (BA, BS, LBA, and BLO)] to identify the effects of soybean oil on body weight, serum lipid, adiponectin, insulin, and leptin levels in mice with high fat diet-induced obesity. The body weight and serum lipid level of the C group increased drastically compared to those of the N group. In contrast, the group fed a diet combined with fermented soybean oil showed decreases in weight, serum total cholesterol, LDL-cholesterol, and triglyceride levels compared to those of the C group. Moreover, soybean oil was found to be effective in the BLO group. In conclusion, fermented soybean oil has positive effects in prohibiting adipocyte differentiation increased by high fat diet and improving serum lipid composition. Therefore, fermented soybean oil can be used as a functional food material with anti-obesity activity.

Red pepper seed water extract inhibits preadipocyte differentiation and induces mature adipocyte apoptosis in 3T3-L1 cells

  • Kim, Hwa-Jin;You, Mi-Kyoung;Lee, Young-Hyun;Kim, Hyun-Jung;Adhikari, Deepak;Kim, Hyeon-A
    • Nutrition Research and Practice
    • /
    • v.12 no.6
    • /
    • pp.494-502
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Reducing the number of adipocytes by inducing apoptosis of mature adipocytes as well as suppressing differentiation of preadipocytes plays an important role in preventing obesity. This study examines the anti-adipogenic and pro-apoptotic effect of red pepper seed water extract (RPS) prepared at $4^{\circ}C$ (RPS4) in 3T3-L1 cells. MATERIALS/METHODS: Effect of RPS4 or its fractions on lipid accumulation was determined in 3T3-L1 cells using oil red O (ORO) staining. The expressions of AMP-activated protein kinase (AMPK) and adipogenic associated proteins [peroxisome proliferator-activated receptor-${\gamma}$ ($PPAR-{\gamma}$), CCAAT/enhancer-binding proteins ${\alpha}$ (C/EBP ${\alpha}$), sterol regulatory element binding protein-1c (SREBP-1c), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC)] were measured in 3T3-L1 cells treated with RPS4. Apoptosis and the expression of Akt and Bcl-2 family proteins [B-cell lymphoma 2 (Bcl-2), Bcl-2-associated death promoter (Bad), Bcl-2 like protein 4 (Bax), Bal-2 homologous antagonist/killer (Bak)] were measured in mature 3T3-L1 cells treated with RPS4. RESULTS: Treatment of RPS4 ($0-75{\mu}g/mL$) or its fractions ($0-50{\mu}g/mL$) for 24 h did not have an apparent cytotoxicity on pre and mature 3T3-L1 cells. RPS4 significantly suppressed differentiation and cellular lipid accumulation by increasing the phosphorylation of AMPK and reducing the expression of $PPAR-{\gamma}$, C/EBP ${\alpha}$, SREBP-1c, FAS, and ACC. In addition, all fractions except ethyl acetate fraction significantly suppressed cellular lipid accumulation. RPS4 induced the apoptosis of mature adipocytes by hypophosphorylating Akt, increasing the expression of the pro-apoptotic proteins, Bak, Bax, and Bad, and reducing the expression of the anti-apoptotic proteins, Bcl-2 and p-Bad. CONCLUSIONS: These finding suggest that RPS4 can reduce the numbers as well as the size of adipocytes and might useful for preventing and treating obesity.

Ethanol extract of Plantago asiatica L. controls intracellular fat accumulation and lipid metabolism in 3T3-L1 Adipocytes (차전초의 에탄올추출물이 3T3-L1 지방세포의 지방축적 및 지질대사에 미치는 영향)

  • Jeon, Seo Young;Park, Ji Young;Shin, Insoon;Kim, Sung Ok;An, Hee Duk;Kim, Mi Ryeo
    • The Korea Journal of Herbology
    • /
    • v.29 no.4
    • /
    • pp.77-82
    • /
    • 2014
  • Objectives : The effects of ethanol extract of Plantago asiatica L. were investgated on adipocyte differentiation, lipopogenesis, lipolysis and apoptosis using differnentiated 3T3-L1 adipocytes. Methods : Plantago asiatica L. was extracted with ethanol (CCE). We carried on MTT assay for cell proliferation, Oil Red O staining for determination of cell differentiation and intracelluar adipogenesis. TUNEL staining assay for cell apoptosis, and Western blot analysis for measurement of pAMPK and pACC, $C/EBP{\alpha}$, $PPAR{\gamma}$ protein expressions were performed. Results : The addition of CCE up to 0.2 mg/ml into cell culture media showed no cytotoxicity. Treatment of 0.2 mg/ml CCE significantly inhibited differentiation in 3T3-L1 preadipocytes. Lipid accumulation of the CCE treated cells was decreased compared with that of control. Induction of cell apoptosis was increased in CCE treated cells compared with that of control. AMPK and ACC levels of the cells with 0.2 mg/ml CCE were led to phosphorylation and also expressions of $C/EBP{\alpha}$ and $PPAR{\gamma}$, as adipogenic transcription factors, were suppressed compared with those of control. Conclusions : Taken together, these results provide evidence that CCE has a regulatory role in lipid metabolism that is related to differentiation into adipocytes, adipogenesis and apoptosis.

1,25-dihydroxyvitamin D3 affects thapsigargin-induced endoplasmic reticulum stress in 3T3-L1 adipocytes

  • Dain Wi;Chan Yoon Park
    • Nutrition Research and Practice
    • /
    • v.18 no.1
    • /
    • pp.1-18
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: Endoplasmic reticulum (ER) stress in adipose tissue causes an inflammatory response and leads to metabolic diseases. However, the association between vitamin D and adipose ER stress remains poorly understood. In this study, we investigated whether 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) alleviates ER stress in adipocytes. MATERIALS/METHODS: 3T3-L1 cells were treated with different concentrations (i.e., 10-100 nM) of 1,25(OH)2D3 after or during differentiation (i.e., on day 0-7, 3-7, or 7). They were then incubated with thapsigargin (TG, 500 nM) for an additional 24 h to induce ER stress. Next, we measured the mRNA and protein levels of genes involved in unfold protein response (UPR) and adipogenesis using real-time polymerase chain reaction and western blotting and quantified the secreted protein levels of pro-inflammatory cytokines. Finally, the mRNA levels of UPR pathway genes were measured in adipocytes transfected with siRNA-targeting Vdr. RESULTS: Treatment with 1,25(OH)2D3 during various stages of adipocyte differentiation significantly inhibited ER stress induced by TG. In fully differentiated 3T3-L1 adipocytes, 1,25(OH)2D3 treatment suppressed mRNA levels of Ddit3, sXbp1, and Atf4 and decreased the secretion of monocyte chemoattractant protein-1, interleukin-6, and tumor necrosis factor-α. However, downregulation of the mRNA levels of Ddit3, sXbp1, and Atf4 following 1,25(OH)2D3 administration was not observed in Vdr-knockdown adipocytes. In addition, exposure of 3T3-L1 preadipocytes to 1,25(OH)2D3 inhibited transcription of Ddit3, sXbp1, Atf4, Bip, and Atf6 and reduced the p-alpha subunit of translation initiation factor 2 (eIF2α)/eIF2α and p-protein kinase RNA-like ER kinase (PERK)/PERK protein ratios. Furthermore, 1,25(OH)2D3 treatment before adipocyte differentiation reduced adipogenesis and the mRNA levels of adipogenic genes. CONCLUSIONS: Our data suggest that 1,25(OH)2D3 prevents TG-induced ER stress and inflammatory responses in mature adipocytes by downregulating UPR signaling via binding with Vdr. In addition, the inhibition of adipogenesis by vitamin D may contribute to the reduction of ER stress in adipocytes.

Cydonia oblonga Miller fruit extract exerts an anti-obesity effect in 3T3-L1 adipocytes by activating the AMPK signaling pathway

  • Hyun Sook Lee;Jae In Jung;Jung Soon Hwang;Myeong Oh Hwang;Eun Ji Kim
    • Nutrition Research and Practice
    • /
    • v.17 no.6
    • /
    • pp.1043-1055
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: The fruit of Cydonia oblonga Miller (COM) is used traditionally in Mediterranean region medicine to prevent or treat obesity, but its mechanism of action is still unclear. Beyond a demonstrated anti-obesity effect, the fruit was tested for the mechanism of adipogenesis in 3T3-L1 preadipocytes. MATERIALS/METHODS: 3T3-L1 preadipocytes were cultured for 8 days with COM fruit extract (COME) at different concentrations (0-600 ㎍/mL) with adipocyte differentiation medium. The cell viability was measured using an MTT assay; triglyceride (TG) was stained with Oil Red O. The expression levels of the adipogenesis-related genes and protein expression were analyzed by reverse transcription polymerase chain reaction and Western blotting, respectively. RESULTS: COME inhibited intracellular TG accumulation during adipogenesis. A COME treatment in 3T3-L1 cells induced upregulation of the adenosine monophosphate-activated protein kinase (AMPK)α phosphorylation and downregulation of the adipogenic transcription factors, such as sterol regulatory element-binding protein 1c, peroxisome proliferator-activated receptor γ, and CCAAT/enhancer binding protein α. The COME treatment reduced the mRNA expression of fatty acyl synthetase, adenosine triphosphate-citrate lyase, adipocyte protein 2, and lipoprotein lipase. It increased the mRNA expression of hormone-sensitive lipase and carnitine palmitoyltransferase I in 3T3-L1 cells. CONCLUSIONS: COME inhibits adipogenesis via the AMPK signaling pathways. COME may be used to prevent and treat obesity.

Anti-Obesity Effects of Jeju Hallabong Tangor (Citrus kiyomi${\times}$ponkan) Peel Extracts in 3T3-L1 Adipocytes (제주산 한라봉 과피 추출물의 지방세포에서의 항비만 효과)

  • Lim, Heejin;Seo, Jieun;Chang, Yun-Hee;Han, Bok-Kyung;Jeong, Jung-Ky;Park, Su-Beom;Choi, Hyuk-Joon;Hwang, Jinah
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.11
    • /
    • pp.1688-1694
    • /
    • 2014
  • Jeju Hallabong Tangor (Citrus kiyomi${\times}$ponkan) is a Citrus species with a variety of physiological properties such as anti-oxidant, anti-inflammation, anti-cancer, and anti-obesity. We investigated the anti-obesity effects of Hallabong Tangor peel extracts before (HLB) and after (HLB-C) bioconversion with cytolase based on modulation of adipocyte differentiation and lipid metabolism in 3T3-L1 adipocytes. Treatment with cytolase decreased flavanone rutinoside forms (narirutin and hesperidin) and increased flavanone aglycone forms (naringenin and hesperetin). During adipocyte differentiation, 3T3-L1 cells were treated with 0.5 mg/mL of Sinetrol (a positive control), HLB or HLB-C. Adipocyte differentiation was inhibited in both citrus groups, but not in control and Sinetriol groups. HLB and HLB-C tended to reduce insulin-induced mRNA levels of CCAAT/enhancer-binding protein ${\alpha}$ ($C/EBP{\alpha}$) and sterol regulatory element-binding protein 1c (SREBP1c). Compared to the control and Sinetrol groups, HLB and HLB-C markedly suppressed insulin-induced protein expression of $C/EBP{\alpha}$ and peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$). The HLB and Sinetrol groups, but not HLB-C group, significantly increased adipolytic activity with higher release of free glycerol compared to the control group in differentiated 3T3-L1 adipocytes. These results suggest that bio-conversion of Hallabong Tangor peel extracts with cytolase increases aglycone flavonoids. Irrespective of bioconversion, both Hallabong Tangor peel extracts exert anti-obesity effects that may contribute to prevention of obesity through inhibition of adipocyte differentiation or induction of adipolytic activity.

Anti-Obesity Effect of Isoegomaketone Isolated from Perilla frutescens (L.) Britt. cv. Leaves (들깨 잎 추출물에서 분리한 Isoegomaketone(IK)의 항 비만 효능)

  • So, Yangkang;Jo, Yun Ho;Nam, Bo Mi;Lee, Seung Young;Kim, Jin-Baek;Kang, Si-Yong;Jeong, Hye Gwang;Jin, Chang Hyun
    • Korean Journal of Pharmacognosy
    • /
    • v.46 no.4
    • /
    • pp.283-288
    • /
    • 2015
  • In this study, we investigated anti-obesity effect of isoegomaketone (IK) isolated from leaves extract of Perilla frutescens (L.) Britt. cv. We verified differentiation and lipid accumulation by Oil Red O staining in 3T3-L1 cells after IK treatment with differentiation media. IK inhibited mRNA expression of adipocyte specific genes that were related with differentiation of 3T3-L1 cells. We confirmed the effects of IK on body weight and visceral fat mass in obese mice. Mice were randomly divided into three groups; normal diet group (ND), high-fat diet group (HFD) and high-fat diet with IK group (HFD-IK). The obesity mice were induced by feeding the 45% high-fat diet to the C57BL/6J mice during 4 weeks. After HFD-IK was orally administered 10 mg/kg of IK. As a result, the body weight of HFD and HFD-IK was increased 2.4 times and 1.7 times of ND, respectively. Also visceral fat mass of HFD was increased 24 times but in the case of HFD-IK was increased to 13 times in comparison with ND. Taken together, our findings suggest that IK reduced differentiation and adiogenesis in 3T3-L1 cells, decreased the body weight and visceral fat mass in obesity mice. These results suggest that IK may have a potential benefit as anti-obesity material.

Pear pomace water extract inhibits adipogenesis and induces apoptosis in 3T3-L1 adipocytes

  • Rhyu, Jin;Kim, Min Sook;You, Mi-Kyoung;Bang, Mi-Ae;Kim, Hyeon-A
    • Nutrition Research and Practice
    • /
    • v.8 no.1
    • /
    • pp.33-39
    • /
    • 2014
  • Obesity occurs when a person's calorie intake exceeds the amount of energy burns, which may lead to pathologic growth of adipocytes and the accumulation of fat in the tissues. In this study, the effect and mechanism of pear pomace extracts on 3T3-L1 adipocyte differentiation and apoptosis of mature adipocytes were investigated. The effects of pear pomace extract on cell viability and the anti-adipogenic and proapoptotic effects were investigated via MTT assay, Oil red O staining, western blot analysis and apoptosis assay. 3T3-L1 preadipocytes were stimulated with DMEM containing 10% FBS, 0.5 mM 3-isobutyl-1-methylxanthine (IBMX), $5{\mu}g/ml$ insulin and $1{\mu}M$ dexamethasone for differentiation to adipocytes. 3T3-L1 cells were cultured with PBS or water extract of pear pomace. Water extract of pear pomace effectively inhibited lipid accumulations and expressions of PPAR-${\gamma}$ and $C/EBP{\alpha}$ in 3T3-L1 cells. It also increased expression of p-AMPK and decreased the expression of SREBP-1c and FAS in 3T3-L1 cells. The induction of apoptosis was observed in 3T3-L1 cells treated with pear pomace. These results indicate that pear pomace water extract inhibits adipogenesis and induces apoptosis of adipocytes and thus can be used as a potential therapeutic substance as part of prevention or treatment strategy for obesity.