• Title/Summary/Keyword: 3T3-L1 지방세포

Search Result 318, Processing Time 0.044 seconds

Histone H3K4 Methyltransferase SET1A Stimulates the Adipogenesis of 3T3-L1 Preadipocytes (히스톤 H3K4 메칠화효소 SET1A에 의한 지방세포 분화 촉진)

  • Kim, Seon Hoo;Jung, Myeong Ho
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1104-1110
    • /
    • 2017
  • SET1A is a histone H3K4 methyltransferase that catalyzes di- and trimethylation of histone H3 at lysine 4 (H3K4). Mono-, di-, and trimethylations on H3K4 (H3K4me1, H3K4me2, and H3K4me3, respectively) are generally correlated with gene activation. Although H3K4 methylation is associated with the stimulation of adipogenesis of 3T3-L1 preadipocytes, it remains unknown whether SET1A plays a role in the regulation of adipogenesis of 3T3-L1 preadipocytes. Here, we investigated whether SET1A regulates 3T3-L1 preadipocytes' adipogenesis and characterized the mechanism involved in this regulation. SET1A expression increased during 3T3-L1 preadipocytes' adipogenesis. Consistent with the increased SET1A expression, the global H3K4me3 level had also increased on day 2 after the induction of adipogenesis in 3T3-L1 adipocytes. SET1A knockdown using siRNA in 3T3-L1 preadipocytes inhibited 3T3-L1 preadipocytes' adipogenesis, as assessed by Oil Red O staining and the expression of adipogenic genes, indicating that SET1A stimulates the adipogenesis of 3T3-L1 preadipocytes. SET1A knockdown inhibited the cell proliferation of 3T3-L1 cells during mitotic clonal expansion (MCE) via down-regulation of the cell cycle gene cyclin E1, as well as the DNA synthesis gene, dihydrofolate reductase. Furthermore, SET1A knockdown repressed peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) expression during the late stage of adipogenesis. These results indicate that SET1A stimulates MCE and $PPAR{\gamma}$ expression, which leads to the promotion of 3T3-L1 preadipocytes' adipogenesis.

Antioxidant and Anti-Adipogenic Activities of Bread Containing Corn Silk, Job's Tears, Lentinus edodes, and Apple Peel in 3T3-L1 Preadipocytes (옥수수수염, 율무, 표고버섯 그리고 사과껍질을 함유한 빵의 항산화 및 3T3-L1 지방 전구세포 분화 억제 활성)

  • Lee, Chang Won;Park, Yong Il;Kim, Soo-Hyun;Lim, Heekyung;Chung, Mi Ja
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.5
    • /
    • pp.651-663
    • /
    • 2016
  • Corn silk, Job's tears, Lentinus edodes, and apple peel 70% ethanol extracts (CS, JT, LE, and AP) were studied for their antioxidant activities. CS among all extracts showed the highest antioxidant activities based on total polyphenol and flavonoid contents, 2,2-diphenyl-${\beta}$-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) radical scavenging activity, and reducing power. Adipocyte differentiation was investigated by Oil Red O staining assay using CS, JT, LE, AP, and extract of developed bread containing corn silk, Job's tears, Lentinus edodes, and apple peel (DB) treated to 3T3-L1 adipocytes. DB1 and DB2 showed anti-adipogenic and antioxidant effects. Triglyceride (TG) accumulation in 3T3-L1 cells was measured, and among the samples tested (CS, JT, LE, and AP), CS was found to have the highest inhibitory activity against TG accumulation of differentiated 3T3-L1 adipocytes and regulated factors associated with adipogenesis. CS suppressed lipid droplet formation and adipocyte differentiation in 3T3-L1 cells in a dose-dependent manner. We examined the effects of CS on the levels of CCAAT-enhancer-binding protein ${\beta}(C/EBP{\beta})$, peroxisome proliferator activated receptor ${\gamma}(PPAR{\gamma})$, and adipocyte-specific lipid binding protein (aP2) mRNA as well as protein levels in 3T3-L1 cells treated with CS at various concentrations (0, 10, 50, and $100{\mu}g/mL$) during adipocyte differentiation and treatment with CS in 3T3-L1 adipocytes down-regulated expression of $PPAR{\gamma}$ and aP2 mRNA. CS also significantly inhibited up-regulation of $C/EBP{\beta}$, $PPAR{\gamma}$, and aP2 proteins during adipocyte differentiation. These data indicate that DBs have anti-adipogenic activity induced by CS in 3T3-L1 preadipocytes, and CS exerts anti-adipogenic activity by inhibiting expression of $C/EBP{\beta}$, $PPAR{\gamma}$, and aP2 signaling pathway in 3T3-L1 adipocytes. JT, LE, and AP had no inhibitory effects on differentiation of 3T3-L1 preadipocytes but displayed strong antioxidant effects. These results suggest that the developed bread may be a health beneficial food that can prevent or treat obesity and diseases induced by oxidative stress.

Elephant Garlic Extracts Inhibit Adipogenesis in 3T3-L1 Adipocytes (코끼리마늘의 3T3-L1 지방세포 분화억제 효과)

  • Lee, Seul Gi;Hahn, Dongyup;Kim, Soo Rin;Lee, Won Young;Nam, Ju-Ock
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.3
    • /
    • pp.383-388
    • /
    • 2020
  • Elephant garlic (Allium ampeloprasum L.) has been reported to have several pharmacological effects. However, its anti-adipogenic effect and the possible molecular mechanisms have not yet been reported. In this study, we demonstrate that elephant garlic extracts suppress adipogenesis in 3T3-L1 adipocytes. Raw and steamed elephant garlic extracts (REG and SEG, respectively) suppressed the differentiation of adipocytes and cellular lipid accumulation. Of note, the anti-differentiation effect of REG treatment on 3T3-L1 cells resulted in cytotoxicity, whereas SEG-treated cells displayed no such cytotoxicity. Additionally, SEG treatment significantly reduced the adipogenesis-related gene expression of PPAR γ, C/EBPα, adiponectin, Ap2, and LPL. To our knowledge, these results are the first evidence of the anti-adipogenic effects of elephant garlic extracts on 3T3-L1 adipocytes.

Artemisia scoparia Inhibits Adipogenesis in 3T3-L1 Pre-adipocytes by Downregulating the MAPK Pathway (비쑥 추출물이 3T3-L1 지방세포 분화 및 MAPK 신호 전달 경로에 미치는 영향)

  • Oh, Jung Hwan;Karadeniz, Fatih;Seo, Youngwan;Kong, Chang-Suk
    • Journal of Life Science
    • /
    • v.28 no.9
    • /
    • pp.999-1006
    • /
    • 2018
  • Obesity is epidemic worldwide and has reportedly been linked to the progression of several metabolic and cardiovascular diseases. The natural products are decreasing the side effects of medicines used for obesity and also have health benefits dut to their numerous bioactive compounds. In this context, Artemisia scoparia is a widespread plant that has been suggested as possessing various types of bioactivity. In this study, the crude extract from A. scoparia (ASE) was tested for its ability to suppress adipogenesis in mouse 3T3-L1 pre-adipocytes. The molecular pathway by which ASE affects differentiation of 3T3-L1 cells was also investigated. The introduction of ASE to differentiating 3T3-L1 pre-adipocytes resulted in suppressed adipogenesis, as confirmed by decreased intracellular lipid accumulation. The differentiating cells treated with 10 and $100{\mu}g/ml$ of ASE showed 21.9 and 29.0% less lipid accumulation, respectively, than untreated adipocytes. In addition, the results indicated that ASE treatment lowered the expression of the adipogenesis-related factors $PPAR{\gamma}$, $C/EBP{\alpha}$, and SREBP-1c. Furthermore, treating with ASE notably decreased levels of phosphorylated p38, ERK, and JNK in 3T3-L1 adipocytes. These results indicate that ASE exhibits significant anti-adipogenesis activity by downregulating the MAPK and $PPAR{\gamma}$ pathways during the differentiation of 3T3-L1 pre-adipocytes. Therefore, A. scoparia may be a potential source of natural products against obesity.

Adipocyte-Related Genes and Transcription Factors were Affected by siRNA for Aromatase Gene during 3T3-L1 Differentiation (지방세포 분화중인 3T3-L1 세포에서 아로마테이즈 siRNA 처리에 의한 지방관련 유전자와 전사인자의 발현 조절)

  • Jeong, Dong-Kee
    • Journal of Life Science
    • /
    • v.18 no.11
    • /
    • pp.1600-1605
    • /
    • 2008
  • This study was performed to verify the gene expression of 3T3-L1 using the siRNA of the aromatase gene, which is the estrogen synthesis enzymes. First of all three pairs of siRNA were designed from the CYP19A1 (aromatase) and analyzed the formation of fat cell mechanism by transferring gene to 3T3-L1 and differentiating it. As a result, the expression of leptin gene, which is the main gene causing the obesity, was controlled and the cause of the obesity is related with the insulin specifically. The overexpression of adiponectin and adipsin was observed. This result showed that the formation of the fat was controlled a little without any side effect by obstructing a specific material out of all the signal systems in the fat formation. This study will be an important clue to make it clear that the lack or overexpression of estrogen might be the cause of fat formation mechanism.

Anti-Obesity Effect of Ethyl Acetate Fraction from 50% Ethanol Extract of Fermented Curcuma longa L. in 3T3-L1 Cells (발효울금 주정추출물부터 분리된 에틸아세테이트 분획물에 대한 3T3-L1 세포에서의 지방 형성 억제 효과)

  • Kim, Jihye;Park, Jeongjin;Jun, Woojin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.11
    • /
    • pp.1681-1687
    • /
    • 2014
  • In the present study, we investigated the effect of ethyl acetate fraction from 50% ethanol extract of fermented Curcuma longa L. (FCEE) on lipid metabolism in 3T3-L1 cells. The safety range of FCEE was up to $300{\mu}g/mL$. Effects of FCEE on lipid accumulation and intracellular triglyceride (TG) content in 3T3-L1 cells were examined by Oil Red O staining and AdipoRed assay. Compared to adipocytes, lipid accumulation and intracellular TG content were significantly reduced by 10.2% and 13.7%, respectively, upon FCEE treatment at a concentration of $200{\mu}g/mL$. Glucose uptake by 3T3-L1 cells was significantly reduced by 36.6% compared to adipocytes at a concentration of $200{\mu}g/mL$. On day 8, free glycerol release into the culture medium was significantly reduced compared to adipocytes at concentrations of 50, 100, and $200{\mu}g/mL$ of FCEE. FCEE significantly stimulated RNA expression of AMP-activated protein kinase (AMPK) and suppressed mRNA expressions of sterol regulatory element-binding protein-1c (SREBP-1c), CCAAT/enhancer binding proteins ${\alpha}$ ($C/EBP{\alpha}$), and peroxisome proliferator- activated receptor ${\gamma}$ ($PPAR{\gamma}$) in 3T3-L1 cells. These results suggest that FCEE inhibits adipogenesis through activation of AMPK mRNA expressions and inhibition of SREBP-1c, $C/EBP{\alpha}$, and $PPAR{\gamma}$ mRNA expressions.

Effects of Kohlrabi (Brassica oleracea var. Gongylodes) on Proliferation and Differentiation of Pig Preadipocytes and 3T3-L1 Cells (콜라비가 돼지 지방전구세포와 3T3-L1 cell의 증식과 분화에 미치는 영향)

  • Song, Mi-Yeon;Lee, Jae-Joon;Cha, Seon-Sook;Chung, Chung-Soo
    • Journal of Animal Science and Technology
    • /
    • v.55 no.1
    • /
    • pp.19-23
    • /
    • 2013
  • The current study was carried out to determine the effects of Kohlrabi (Brassica oleracea var. gongylodes) on proliferation and differentiation of pig preadipocytes and $_3T_3-L_1$ cells. Pig preadipocytes were isolated from the backfat of the new-born pigs. Twenty-four hours after seeding, the cells were washed with DMEM/F-12 (designated day 0). To measure the cell proliferation, the cells were treated with 25 ng/ml and 100 ng/ml ethanol extracts of Kohlrabi (peel and flesh) for two days (day 0 ~ 2). To measure differentiation, the cells were treated with Kohlrabi for two days (day 0 ~ 2) and cell differentiation was measured on day 6. Twenty-five ng/ml and 100 ng/ml of Kohlrabi peel decreased proliferation of pig preadipocytes by 4.59% and 17.7%, respectively, compared with the control and Kohlrabi flesh by 11.4% and 19.2%, respectively. However, Kohlrabi did not inhibit cell differentiation. To measure the effects of Kohlrabi on proliferation and differentiation of $_3T_3-L_1$ cells, the cells were treated with Kohlrabi for two days in culture, like pig preadipocytes. Kohlrabi (both peel and flesh) did not show any effects on cell proliferation and differentiation. In summary, the results of the current study showed that Kohlrabi decreased proliferation of pig preadipocytes, but no inhibitory effects on differentiation of the cells. Kohlrabi had no effects on proliferation and differentiation of $_3T_3-L_1$ cells.

Anti-adipogenic activity of Smilax sieboldii extracts in 3T3-L1 adipocytes (3T3-L1 지방전구세포에서 청가시덩굴 추출물의 항비만 활성)

  • Seohyun Park;Jung A Lee;Seong Su Hong;Eun-Kyung Ahn
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.369-378
    • /
    • 2023
  • Smilax sieboldii is one of the Smilax species. A number of Smilax plants have multiple physiologically-active components and anti-inflammatory/anti-oxidant effects. Antiobesity effects induced by Smilax sieboldii have not been reported. In this study, we investigated the effects and molecular mechanisms of anti-obesity activity of 70% ethanol Smilax sieboldii extract (SSE). The anti-obesity effect of SSE was determined using 3T3-L1 adipocytes. We confirmed that SSE was not cytotoxic to murine 3T3-L1 preadipocytes, we evaluated SSE dose-dependently decreased the accumulation of lipids via an Oil Red O assay and triglyceride assay. These anti-obesity activities of SSE were mediated by the inhibition of adipogenesis-related marker genes (peroxisome proliferator activated receptor-γ, CCAAT-enhancer-binding protein α, and SREBP1c) and lipogenesis-related marker genes (fatty acid synthase and aP2). These results suggest that SSE has the potential to exert anti-obesity and anti-hyperlipidemia effects by regulating adipogenic transcription factors and inhibiting the expression of adipogenic markers.

Lupeol Improves TNF-α Induced Insulin Resistance by Downregulating the Serine Phosphorylation of Insulin Receptor Substrate 1 in 3T3-L1 Adipocytes (3T3-L1 지방세포에서 루페올의 IRS-1의 인산화 조절을 통한 TNF-α 유도 인슐린 저항성 개선 효과)

  • Hyun Ah Lee;Ji Sook Han
    • Journal of Life Science
    • /
    • v.33 no.11
    • /
    • pp.859-867
    • /
    • 2023
  • Lupeol is a type of pentacyclic triterpene that has been reported to have therapeutic effects for treating many diseases; however, its effect on insulin resistance is unclear clear. This study examined the inhibitory effect of lupeol on the serine phosphorylation of insulin receptor substrate-1 in insulin resistance-induced 3T3-L1 adipocytes. 3T3-L1 cells were cultured and treated with tumor necrosis factor-α (TNF-α) for 24 hours to induce insulin resistance. Cells treated with different concentrations of lupeol (15 μM or 30 μM) or 100 nM of rosiglitazone were incubated. Then, lysed cells underwent western blotting. Lupeol exhibited a positive effect on the negative regulator of insulin signaling and inflammation-activated protein kinase caused by TNF-α in adipocytes. Lupeol inhibited the activation of protein tyrosine phosphatase-1B (PTP-1B)-a negative regulator of insulin signaling-and c-Jun N-terminal kinase (JNK); it was also an inhibitor of nuclear factor kappa-B kinase (IKK) and inflammation-activated protein kinases. In addition, Lupeol downregulated serine phosphorylation and upregulated tyrosine phosphorylation in insulin receptor substrate-1. Then, the downregulated phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway was activated, the translocation of glucose transporter type 4 was stimulated to the cell membrane, and intracellular glucose uptake increased in the insulin resistance-induced 3T3-L1 adipocytes. Lupeol may improve TNF-α-induced insulin resistance by downregulating the serine phosphorylation of insulin receptor substrate 1 by inhibiting negative regulators of insulin signaling and inflammation-activated protein kinases in 3T3-L1 adipocytes.

Effect of Acacia catechu Extract on 3T3-L1 Preadipocyte Differentiation (지방세포의 분화에 미치는 Acacia catechu 추출물의 항비만 효과)

  • Kim, Dong-Gyu;Kang, Min Jung;Suh, Hwa Jin;Kwon, Oh Oun;Shin, Jung Hye
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.8
    • /
    • pp.1107-1113
    • /
    • 2016
  • The purpose of this study was to investigate the effects of catechu water extract on adipogenesis in 3T3-L1 adipocytes. 3T3-L1 preadipocytes were differentiated with adipogenic regents by incubation for 9 days in the absence or presence of catechu extract ranging from $1{\sim}200{\mu}g/mL$. The effect of catechu extracts on cell proliferation of 3T3-L1 preadipocytes was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The effect of catechu extracts on 3T3-L1 differentiation was examined by measuring intracellular lipid droplet and triglyceride contents. These results were obtained from preadipocyte proliferation and adipocyte differentiation of 3T3-L1. Catechu extracts inhibited lipid accumulation and remarkably decreased triglyceride contents in 3T3-L1 preadipocytes at a concentration showing no cytotoxicity. The anti-adipogenic effects of catechu appeared to be mediated by significant down-regulation of expression of peroxisome proliferator-activated receptor ${\gamma}$, CCAAT/enhancer-binding protein ${\alpha}$, and sterol regulatory element-binding protein 1c proteins apart from expression of hormone-sensitive lipase. We suggest that catechu extracts significantly inhibit adipogenesis and can be used for regulation of obesity.