• Title/Summary/Keyword: 3DA/V

Search Result 322, Processing Time 0.021 seconds

Rat Malonyl-CoA Decarboxylase; Cloning, Expression in E. coli and its Biochemical Characterization

  • Lee, Gha-Young;Bahk, Young-Yil;Kim, Yu-Sam
    • BMB Reports
    • /
    • v.35 no.2
    • /
    • pp.213-219
    • /
    • 2002
  • Malonyl-CoA decarboxylase (E.C.4.1.1.9) catalyzes the conversion of malonyl-CoA to acetyl-CoA. Although the metabolic role of this enzyme has not been fully defined, it has been reported that its deficiency is associated with mild mental retardation, seizures, hypotonia, cadiomyopathy, developmental delay, vomiting, hypoglycemia, metabolic acidosis, and malonic aciduria. Here, we isolated a cDNA clone for malonyl CoA decarboxylase from a rat brain cDNA library, expressed it in E. coli, and characterized its biochemical properties. The full-length cDNA contained a single open-reading frame that encoded 491 amino acid residues with a calculated molecular weight of 54, 762 Da. Its deduced amino acid sequence revealed a 65.6% identity to that from the goose uropigial gland. The sequence of the first 38 amino acids represents a putative mitochondrial targeting sequence, and the last 3 amino acid sequences (SKL) represent peroxisomal targeting ones. The expression of malonyl CoA decarboxylase was observed over a wide range of tissues as a single transcript of 2.0 kb in size. The recombinant protein that was expressed in E. coli was used to characterize the biochemical properties, which showed a typical Michaelis-Menten substrate saturation pattern. The $K_m$ and $V_{max}$ were calculated to be $68\;{\mu}M$ and $42.6\;{\mu}mol/min/mg$, respectively.

Cloning and Characterization of a Gene Encoding Phosphoketolase in a Lactobacillus paraplantarum Isolated from Kimchi

  • Jeong, Do-Won;Lee, Jung-Min;Lee, Hyong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.822-829
    • /
    • 2007
  • A gene coding for phosphoketolase, a key enzyme of carbohydrate catabolism in heterofermentative lactic acid bacteria(LAB), was cloned from a Lactobacillus paraplantarum C7 and expressed in Escherichia coli. The gene is 2,502 bp long and codes for a 788-amino-acids polypeptide with a molecular mass of 88.7 kDa. A Shine-Dalgarno sequence(aaggag) and an inverted-repeat terminator sequence are located upstream and downstream of the phosphoketolase gene, respectively. The gene exhibits an identity of >52% with phosphoketolases of other LAB. The phosphoketolase of Lb. paraplantarum C7(LBPK) contains several highly conserved phosphoketolase signature regions and typical thiamine pyrophosphate(TPP) binding sites, as reported for other TPP-dependent enzymes. The phosphoketolase gene was fused to a glutathione S-transferase(GST::LBPK) gene for purification. The GST::LBPK fusion protein was detected in the soluble fraction of a recombinant Escherichia coli BL21. The GST::LBPK fusion protein was purified with a yield of 4.32mg/400ml by GSTrap HP affinity column chromatography and analyzed by N-terminal sequencing. LBPK was obtained by factor Xa treatment of fusion protein and the final yield was 3.78mg/400ml. LBPK was examined for its N-terminal sequence and phosphoketolase activity. The $K_M\;and\;V_{max}$ values for fructose-6-phosphate were $5.08{\pm}0.057mM(mean{\pm}SD)$ and $499.21{\pm}4.33{\mu}mol/min/mg$, respectively, and the optimum temperature and pH for the production of acetyl phosphate were $45^{\circ}C$ and 7.0, respectively.

Isolation and Characterization of an Agarase-Producing Bacterial Strain, Alteromonas sp. GNUM-1, from the West Sea, Korea

  • Kim, Jonghee;Hong, Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1621-1628
    • /
    • 2012
  • The agar-degrading bacterium GNUM-1 was isolated from the brown algal species Sargassum serratifolium, which was obtained from the West Sea of Korea, by using the selective artificial seawater agar plate. The cells were Gram-negative, $0.5-0.6{\mu}m$ wide and $2.0-2.5{\mu}m$ long curved rods with a single polar flagellum, forming nonpigmented, circular, smooth colonies. Cells grew at $20^{\circ}C-37^{\circ}C$, between pH 5.0 and 9.0, and at 1-10% (w/v) NaCl. The DNA G+C content of the GNUM-1 strain was 45.5 mol%. The 16S rRNA sequence of the GNUM-1 was very similar to those of Alteromonas stellipolaris LMG 21861 (99.86% sequence homology) and Alteromonas addita $R10SW13^T$(99.64% sequence homology), which led us to assign it to the genus Alteromonas. It showed positive activities for agarase, amylase, gelatinase, alkaline phosphatase, esterase (C8), lipase (C14), leucine arylamidase, valine arylamidase, ${\alpha}$-chymotrypsin, acid phosphatase, naphthol-AS-BI-phosphohydrolase, ${\alpha}$-galactosidase, ${\beta}$-galactosidase, ${\beta}$-glucosidase, catalase, and urease. It can utilize citrate, malic acid, and trisodium citrate. The major fatty acids were summed feature 3 (21.5%, comprising $C_{16:1}{\omega}7c/iso-C_{15:0}$ 2-OH) and C16:0 (15.04%). On the basis of the variations in many biochemical characteristics, GNUM-1 was considered as unique and thus was named Alteromonas sp. GNUM-1. It produced the highest agarase activity in modified ASW medium containing 0.4% sucrose, but lower activity in rich media despite superior growth, implying that agarase production is tightly regulated and repressed in a rich nutrient condition. The 30 kDa protein with agarase activity was identified by zymography, and this report serves as the very first account of such a protein in the genus Alteromonas.

Cloning, Expression, and Characterization of a New Phytase from the Phytopathogenic Bacterium Pectobacterium wasabiae DSMZ 18074

  • Shao, Na;Huang, Huoqing;Meng, Kun;Luo, Huiying;Wang, Yaru;Yang, Peilong;Yao, Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.7
    • /
    • pp.1221-1226
    • /
    • 2008
  • The soft rot bacterium Pectobacterium wasabiae is an economically important pathogen of many crops. A new phytase gene, appA, was cloned from P. wasabiae by degenerate PCR and TAIL-PCR. The open reading frame of appA consisted of 1,302 bp encoding 433 amino acid residues, including 27 residues of a putative signal peptide. The mature protein had a molecular mass of 45 kDa and a theoretical pI of 5.5. The amino acid sequence contained the conserved active site residues RHGXRXP and HDTN of typical histidine acid phosphatases, and showed the highest identity of 48.5% to PhyM from Pseudomonas syringae. The gene fragment encoding the mature phytase was expressed in Escherichia coli BL21 (DE3), and the purified recombinant phytase had a specific activity of 1,072$\pm$47 U/mg for phytate substrate. The optimum pH and temperature for the purified phytase were pH 5.0 and 50$^{\circ}C$, respectively. The $K_m$ value was 0.17 mM, with a $V_{max}$ of 1,714 $\mu$mol/min/mg. This is the first report of the identification and isolation of phytase from Pectobacterium.

Induction of Growth Hormone Release by the Extracts of Lonicera japonica $T_{HUNB.}$ (인동 추출물의 성장호르몬 유발 효과)

  • Jung, Dae-Young;Lee, Ho-Young;Ha, Hye-Kyung;Jung, Da-Young;Kang, Sam-Sik;Kim, Chung-Sook
    • Korean Journal of Pharmacognosy
    • /
    • v.34 no.3 s.134
    • /
    • pp.256-262
    • /
    • 2003
  • Lonicerae Flos (LF) has been used as an anticancer, anti-viral, and anti-inflammatory agent in traditional herbal medicine. In this study, induction of rat growth hormone (rGH) by addition of methanol (MeOH) extract of LF of Lonicerae (L.) Folium or several constituents of L. Folium were carried out in the pituitary cell culture system. Induced rGH level by addition of 70% MeOH extract of LF was increased to $732.65{\pm}105.64%$ of control (n=18, p<0.01), however, the other sequential fractions were not significantly different from the control. Ochnaflavone, a constituent of L. Folium, induced rGH level in the cell culture to $329.73{\pm}160.00%$ of control (n=6, p<0.01). An I..v. injection of the MeOH extract of LF did not increase plasma rGH level in anesthetized rats. Unfortunately, the MeOH extract of LF induced prolactin and LH release about 7 and 5 fold of the control, respectively (p<0.05, each). In conclusions, 70% MeOH extract of LF exerted induction of rGH release in rat pituitary cell culture. Further studies to investigate mechanisms of the inducded rGH by LF are in progress.

Identification of Free-Living Amoebas in Tap Water of Buildings with Storage Tanks in Korea

  • Lee, Da-In;Park, Sung Hee;Baek, Jong Hwan;Yoon, Jee Won;Jin, Soo Im;Han, Kwang Eon;Yu, Hak Sun
    • Parasites, Hosts and Diseases
    • /
    • v.58 no.2
    • /
    • pp.191-194
    • /
    • 2020
  • Free-living amoebas (FLAs) can cause severe disease in humans and animals when they become infected. However, there are no accurate survey reports on the prevalence of FLAs in Korea. In this study, we collected 163 tap water samples from buildings, apartments, and restrooms of highway service areas in 7 Korean provinces with high population density. All these buildings and facilities have water storage tanks in common. The survey was separated into categories of buildings, apartments, and highway service areas. Five hundred milliliters of tap water from each building was collected and filtered with 0.2 ㎛ pore filter paper. The filters were incubated in agar plates with heated E. coli at 25℃. After axenization, genomic DNA was collected from each FLA, and species classification was performed using partial 18S-rDNA PCR-sequencing analysis. We found that 12.9% of tap water from buildings with storage tanks in Korea was contaminated with FLAs. The highway service areas had the highest contamination rate at 33.3%. All of the FLAs, except one, were genetically similar to Vermamoeba vermiformis (Hartmannella vermiformis). The remaining FLA (KFA21) was very similar to Acanthamoeba lugdunensis (KA/E26). Although cases of human infection by V. vermiformis are very rare, we must pay attention to the fact that one-third of tap water supplies in highway service areas have been contaminated.

Peptide Nucleic Acid Probe-Based Analysis as a New Detection Method for Clarithromycin Resistance in Helicobacter pylori

  • Jung, Da Hyun;Kim, Jie-Hyun;Jeong, Su Jin;Park, Soon Young;Kang, Il-Mo;Lee, Kyoung Hwa;Song, Young Goo
    • Gut and Liver
    • /
    • v.12 no.6
    • /
    • pp.641-647
    • /
    • 2018
  • Background/Aims: Helicobacter pylori eradication rates are decreasing because of increases in clarithromycin resistance. Thus, finding an easy and accurate method of detecting clarithromycin resistance is important. Methods: We evaluated 70 H. pylori isolates from Korean patients. Dual-labeled peptide nucleic acid (PNA) probes were designed to detect resistance associated with point mutations in 23S ribosomal ribonucleic acid gene domain V (A2142G, A2143G, and T2182C). Data were analyzed by probe-based fluorescence melting curve analysis based on probe-target dissociation temperatures and compared with Sanger sequencing. Results: Among 70 H. pylori isolates, 0, 16, and 58 isolates contained A2142G, A2143G, and T2182C mutations, respectively. PNA probe-based analysis exhibited 100.0% positive predictive values for A2142G and A2143G and a 98.3% positive predictive value for T2182C. PNA probe-based analysis results correlated with 98.6% of Sanger sequencing results (${\kappa}$-value=0.990; standard error, 0.010). Conclusions: H. pylori clarithromycin resistance can be easily and accurately assessed by dual-labeled PNA probe-based melting curve analysis if probes are used based on the appropriate resistance-related mutations. This method is fast, simple, accurate, and adaptable for clinical samples. It may help clinicians choose a precise eradication regimen.

Isolation of Exopolysaccharide-Producing Lactic Acid Bacteria from Pa-Kimchi and Characterization of Exopolysaccharides

  • Yun Ji Kang;Tae Jin Kim;Min Jae Kim;Ji Yeon Yoo;Jeong Hwan Kim
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.2
    • /
    • pp.157-166
    • /
    • 2023
  • Three lactic acid bacteria (LAB) producing exopolysaccharides (EPSs) were isolated from Pa (green onion)-kimchi, and identified as Weissella confusa (SKP 173), Weissella cibaria (SKP 182), and Leuconostoc citreum (SKP 281), respectively by 16S rRNA gene sequencing. The yields of EPS were 21.27, 18.53, and 15.4 g/l for EPS from SKP 173, 182, and 281, respectively when grown in MRS broth containing sucrose (5%, w/v). Total sugar contents were 64.39, 62.84, and 65.16% (w/w) for EPS from SKP 173, 182, and 281, respectively while the protein contents were 0.33, 0.31, and 0.25% (w/w), respectively. EPSs from W. confusa SKP 173 and W. cibaria SKP 182 contained glucose only but EPS from L. citreum SKP 281 contained glucose and glucitol. Viscosities of the 2% (w/w) freeze-dried EPS solution were 9.60, 8.00, and 8.20 centipoise (cP) for EPS from SKP 173, 182, and 281, respectively. Viscosities of culture grown in MRS broth with 5% sucrose (no glucose) were 92.98, 57.19, and 18.8 cP, respectively. The average molecular weights of EPSs were larger than 2 × 107 Da. Fourier transform infrared spectroscopy (FT-IR) analyses of EPSs showed typical carbohydrate peaks, suggesting that the EPSs consisted of pyranose saccharides with α-(1,6) and α-(1,3) glycosidic linkages. L. citreim SKP 281 was used as the starter for yogurt fermentation, and EPS production was confirmed.

Preparation of Drinkable Yoghurt Added with Green Tea Powder (가루녹차를 첨가한 Drinkable Yoghurt의 제조)

  • Jung Da-Wa;Park Shin-In
    • The Korean Journal of Food And Nutrition
    • /
    • v.18 no.4
    • /
    • pp.349-356
    • /
    • 2005
  • For the purpose of making a new type of functional drinkable yoghurt, skim milk containing $0.5\~2.0\%$(w/v) green tea powder was fermented by the mixed stains of Streptococcus thermophilus and Lactobacillus acidophilus. Quality characteristics of the drinkable yoghurts were evaluated in terms of quality-keeping properties(number of viable cells, pH, titratable acidity) and sensory properties. When the drinkable yoghurts added with $0.5\~2.0\%$ green tea powder were kept at $4^{\circ}C\;and\;20^{\circ}C$ for 20 days, the number of viable cell counts of the lactic acid bacteria($2.1\times10^8\~6.2\times10^8$ CFU/mL). pH($4.16\~4.22$) and titratable acidity($0.792\~0.881\%$) were not significantly changed for all drinkable yoghurts during the storage at $4^{\circ}C\;and\;20^{\circ}C$ days, but the number of viable cell counts($4.2\times10^3\~1.8\times10^5$ CFU/mL), pH($3.82\~3.92$) and titratable acidity($1.057\~1.174\%$) were markedly changed f3r the storage at $20^{\circ}C$ for 20 days. Therefore the keeping quality of the drinkable yoghurts with addition of green tea powder was relatively good at $4^{\circ}C$ for 20 days. The results of sensory evaluation of the drinkable yoghurts containing peen tea powder indicated that flavor, sweet taste, mouthfeel and aftertaste of the drinkable yoghurt with $0.5\%$ green tea powder showed higher preference than others. And the drinkable yoghurt containing $0.5\% green tea powder added $20\%$(v/v) oligosaccharide had the higher sensory scores in sweet taste, aftertaste and overall acceptability among the treatments.

Rosuvastatin Induces ROS-mediated Apoptosis in Human Prostate Cancer PC-3 Cells (Rosuvastatin이 유도하는 ROS가 전립선암 PC-3 세포주의 세포사멸 유도에 미치는 영향)

  • Choi, Hyeun Deok;Baik, Jong Jin;Kim, Sang Hun;Yu, Sun Nyoung;Chun, Sung Hak;Kim, Young Wook;Nam, Hyo Won;Kim, Kwang Youn;Ahn, Soon Cheol
    • Journal of Life Science
    • /
    • v.26 no.4
    • /
    • pp.398-405
    • /
    • 2016
  • Statins, the inhibitors of 3-hydroxy 3-methylglutaryl coenzyme A (HMG-CoA) reductase, are widely used in treatments of hypercholesterolemia and newly known as anti-cancer effect of various cancer cells. Recently, several studies suggested that reactive oxygen species (ROS) play a critical role on cell death signaling. However, mechanism of ROS by rosuvastatin is currently unclear. This study aimed to explore the molecular mechanism of apoptosis by rosuvastatin in human prostate cancer PC-3 cells. Cell viability and apoptosis-related protein expression were measured by MTT assay and western blotting, respectively. In addition, the levels of apoptosis and ROS were analyzed. The results showed that rosuvastatin dramatically reduced cell viability in a dose- and time-dependent manner. We confirmed that rosuvastatin induced apoptosis through reduction of procaspase-3 and cleavage of poly (ADP-ribose) polymerase (PARP) in PC-3 cells. In addition, rosuvastatin stimulated ROS production in a dose-dependent manner and pre-treatment with N-acetylcysteine (NAC), a ROS scavenger, significantly recovered rosuvastatin-induced ROS and apoptosis. Thus, we concluded that rosuvastain induces apoptosis through generation of ROS in human prostate cancer PC-3 cells and provides a promising approach to improve the efficacy of cancer therapy.