DOI QR코드

DOI QR Code

Isolation of Exopolysaccharide-Producing Lactic Acid Bacteria from Pa-Kimchi and Characterization of Exopolysaccharides

  • Yun Ji Kang (Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University) ;
  • Tae Jin Kim (Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University) ;
  • Min Jae Kim (Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University) ;
  • Ji Yeon Yoo (Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University) ;
  • Jeong Hwan Kim (Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University)
  • Received : 2023.05.17
  • Accepted : 2023.06.10
  • Published : 2023.06.28

Abstract

Three lactic acid bacteria (LAB) producing exopolysaccharides (EPSs) were isolated from Pa (green onion)-kimchi, and identified as Weissella confusa (SKP 173), Weissella cibaria (SKP 182), and Leuconostoc citreum (SKP 281), respectively by 16S rRNA gene sequencing. The yields of EPS were 21.27, 18.53, and 15.4 g/l for EPS from SKP 173, 182, and 281, respectively when grown in MRS broth containing sucrose (5%, w/v). Total sugar contents were 64.39, 62.84, and 65.16% (w/w) for EPS from SKP 173, 182, and 281, respectively while the protein contents were 0.33, 0.31, and 0.25% (w/w), respectively. EPSs from W. confusa SKP 173 and W. cibaria SKP 182 contained glucose only but EPS from L. citreum SKP 281 contained glucose and glucitol. Viscosities of the 2% (w/w) freeze-dried EPS solution were 9.60, 8.00, and 8.20 centipoise (cP) for EPS from SKP 173, 182, and 281, respectively. Viscosities of culture grown in MRS broth with 5% sucrose (no glucose) were 92.98, 57.19, and 18.8 cP, respectively. The average molecular weights of EPSs were larger than 2 × 107 Da. Fourier transform infrared spectroscopy (FT-IR) analyses of EPSs showed typical carbohydrate peaks, suggesting that the EPSs consisted of pyranose saccharides with α-(1,6) and α-(1,3) glycosidic linkages. L. citreim SKP 281 was used as the starter for yogurt fermentation, and EPS production was confirmed.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2020R1A2C100826711). Kang YJ, Kim MJ, Kim TJ, and Yoo JY have been supported by BK21 four program from MOE, Korea.

References

  1. Mathur H, Beresford TP, Cotter PD. 2020. Health benefits of lactic acid bacteria (LAB) fermentates. Nutrients 12: 1679.
  2. De Filippis F, Pasolli E, Ercolini D. 2020. The food-gut axis: lactic acid bacteria and their link to food, the gut microbiome and human health. FEMS Microbiol. Rev. 44: 454-489. https://doi.org/10.1093/femsre/fuaa015
  3. Lee SJ, Jeon HS, Yoo JY, Kim JH. 2021. Some important metabolites produced by lactic acid bacteria from kimchi. Foods 10: 2148.
  4. Hatti-Kaul R, Chen L, Dishisha T, El Enshasy H. 2018. Lactic acid bacteria: from starter cultures to producers of chemicals. FEMS Microbiol. Lett. 365: fny213.
  5. Shiby VK, Mishra HN. 2013. Fermented milks and milk products as functional foods -a review. Crit. Rev. Food Sci. Nutr. 53: 482-496. https://doi.org/10.1080/10408398.2010.547398
  6. Park KY, Jeong JK, Lee YE, Daily JW 3rd. 2014. Health benefits of kimchi (Korean fermented vegetables) as a probiotic food. J. Med. Food 17: 6-20. https://doi.org/10.1089/jmf.2013.3083
  7. Fadda S, Lopez C, Vignolo G. 2010. Role of lactic acid bacteria during meat conditioning and fermentation: peptides generated as sensorial and hygienic biomarkers. Meat Sci. 86: 66-79. https://doi.org/10.1016/j.meatsci.2010.04.023
  8. De Vuyst L, Degeest B. 1999. Exopolysaccharides from lactic acid bacteria. Technological bottlenecks and practical solutions. Macromol. Symp. 140: 31-41. https://doi.org/10.1002/masy.19991400105
  9. Angelin J, Kavitha M. 2020. Exopolysaccharides from probiotic bacteria and their health potential. Int. J. Biolog. Macromol. 162: 853-865. https://doi.org/10.1016/j.ijbiomac.2020.06.190
  10. Kook SY, Lee Y, Jeong EC, Kim S. 2019. Immunomodulatory effects of exopolysaccharides produced by Bacillus licheniformis and Leuconostoc mesenteroides isolated from Korean kimchi. J. Funct. Foods 54: 211-219. https://doi.org/10.1016/j.jff.2019.01.003
  11. Kim K, Lee G, Thanh HD, Kim JH, Konkit M, Yoon S, et al. 2018. Exopolysaccharide from Lactobacillus plantarum LRCC5310 offers protection against rotavirus-induced diarrhea and regulates inflammatory response. J. Dairy Sci. 101: 5702-5712. https://doi.org/10.3168/jds.2017-14151
  12. Nicolescu CM, Bumbac M, Buruleanu CL, Stanescu SG, Georgescu AA, Toma SM. 2023. Biopolymers produced by lactic acid bacteria: characterization and food application. Polymers 15: 1539.
  13. Wang B, Song Q, Zhao F, Xiao H, Zhou Z, Han Y. 2019. Purification and characterization of dextran produced by Leuconostoc pseudomesenteroides PC as a potential exopolysaccharide suitable for food applications. Process Biochem. 87: 187-195. https://doi.org/10.1016/j.procbio.2019.08.020
  14. Lee KW, Shim JM, Yao Z, Kim JA, Kim HJ, Kim JH. 2017. Characterization of a glutamate decarboxylase (GAD) from Enterococcus avium M5 isolated from jeotgal, a Korean fermented seafood. J. Microbiol. Biotechnol. 27: 1216-1222. https://doi.org/10.4014/jmb.1701.01058
  15. Feng F, Zhou Q, Yang Y, Zhao F, Du R, Han Y, et al. 2018. Characterization of highly branched dextran produced by Leuconostoc citreum B-2 from pineapple fermented product. Int. J. Biol. Macromol. 113: 45-50. https://doi.org/10.1016/j.ijbiomac.2018.02.119
  16. Lee KW, Park JY, Jeong HR, Heo HJ, Han NS, Kim JH. 2012. Probiotic properties of Weissella strains isolated from human faeces. Anaerobe 18: 96-102. https://doi.org/10.1016/j.anaerobe.2011.12.015
  17. Liu C, Lin Q, Gao Y, Ye L, Xing Y, Xi T. 2007. Characterization and antitumor activity of a polysaccharide from Strongylocentrotus nudus eggs. Carbohydr. Polym. 67: 313-318. https://doi.org/10.1016/j.carbpol.2006.05.024
  18. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  19. Lee SB, Rhee YK, Gu EJ, Kim DW, Jang GJ, Song SH, et al. 2017. Mass-based metabolomic analysis of Lactobacillus sakei and its growth media at different growth phases. J. Microbiol. Biotechnol. 27: 925-932. https://doi.org/10.4014/jmb.1609.09014
  20. Kim UJ, Chang HC. 2006. Isolation and characterization of exopolysaccharide producing lactic acid bacteria from Kimchi. Microbiol. Biotechnol. Lett. 34: 196-203.
  21. Saleena LAK, Chandran D, Rayirath G, Shanavas A, Rajalingam S, Vishvanathan M, et al. 2022. Development of low-calorie functional yoghurt by incorporating mannitol producing lactic acid bacteria (Leuconostoc pseudomesenteroides) in the standard yoghurt culture. J. Pure. Appl. Microbiol. 16: 729-736. https://doi.org/10.22207/JPAM.16.1.78
  22. Bounaix MS, Gabriel V, Morel S, Robert H, Rabier P, Remaud Simeon M, et al. 2009. Biodiversity of exopolysaccharides produced from sucrose by sourdough lactic acid bacteria. J. Agric. Food. Chem. 57: 10889-10897. https://doi.org/10.1021/jf902068t
  23. Yang Y, Feng F, Zhou Q, Zhao F, Du R, Zhou Z, et al. 2019. Isolation, purification, and characterization of exopolysaccharide produced by Leuconostoc citreum N21 from dried milk cake. Trans. Tianjin Univ. 25: 161-168. https://doi.org/10.1007/s12209-018-0143-9
  24. Gu JJ, Ha YJ, Yoo SK. 2015. Isolation and characterization of dextrans produced by Leuconostoc sp. strain JYY4 from fermented kimchi. J. Korean Appl. Sci. Technol. 32: 758-766. https://doi.org/10.12925/jkocs.2015.32.4.758
  25. Maina NH, Virkki L, Pynnonen H, Maaheimo H, Tenkanen M. 2011. Structural analysis of enzyme-resistant isomaltooligosaccharides reveals the elongation of α-(1→3)-linked branches in Weissella confusa dextran. Biomacromolecules 12: 409-418. https://doi.org/10.1021/bm1011536
  26. Yim JH, Kim SJ, Aan SH, Lee HK. 2004. Physicochemical and rheological properties of a novel emulsifier, EPS-R, produced by the marine bacterium Hahella chejuensis. Biotechnol. Bioprocess. Eng. 9: 405-413. https://doi.org/10.1007/BF02933066
  27. Miao M, Bai A, Jiang B, Song Y, Cui SW, Zhang T. 2014. Characterisation of a novel water-soluble polysaccharide from Leuconostoc citreum SK24. 002. Food. Hydrocoll. 36: 265-272. https://doi.org/10.1016/j.foodhyd.2013.10.014
  28. Ahmed RZ, Siddiqui K, Arman M, Ahmed N. 2012. Characterization of high molecular weight dextran produced by Weissella cibaria CMGDEX3. Carbohydr. Polym. 90: 441-446. https://doi.org/10.1016/j.carbpol.2012.05.063
  29. Zhao X, Liang Q. 2022. EPS-producing Lactobacillus plantarum MC5 as a compound starter improves rheology, texture, and antioxidant activity of yogurt during storage. Foods 11: 1660.
  30. Kareem AJ, Salman JAS. 2019. Production of dextran from locally Lactobacillus spp. isolates. Rep. Biochem. Mol. Biol. 8: 287-300.
  31. Prete R, Alam MK, Perpetuini G, Perla C, Pittia P, Corsetti A. 2021. Lactic acid bacteria exopolysaccharides producers: a sustainable tool for functional foods. Foods 10: 1653.