• Title/Summary/Keyword: 3D shape

Search Result 3,412, Processing Time 0.034 seconds

Analysis of Foot Shape and Size System of Male High School Students Using 3D Scan Data (3D 스캔 데이터를 활용한 남자 고등학생의 발 형태 및 치수체계 분석)

  • Shin, Yu Jin;Park, Soonjee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.44 no.1
    • /
    • pp.53-67
    • /
    • 2020
  • The purpose of this study is to analyze the foot shape and size specification of male high school students. 3D modeling programs such as 'Artec Studio', 'CATIA', and 'Auto CAD' measured the 3D scan data of 361 male high school students provided by KATS. Through principal factor analysis, 10 factors were extracted, including foot length, medial-lateral ratio, and foot length ratio. As the result of the cluster and ANOVA with post-hoc test (Duncan method), the differences among types were clarified. Type 1 (24.7%) represented outward medial-lateral ratio (M-L ratio) with the lowest instep, ankle and little deformed first toe. Type 2 (41.8%) was characterized by the shortest, even M-L ratio, thin ankle and heel, the highest instep and ankle. Type 3 (33.5%) showed the longest, inward M-L ratio, thick ankle and heel, and deformed first toe. As the cross-tabulation of foot length and ball circumference, 17.2 percent was not covered by KS standard; in addition, the foot length was longer than the KS standard. The correlation analysis of key dimensions showed that foot length and ball circumference were highly correlated with other items; therefore, regression equations were derived to estimate other foot measurements using these two items as independent variables.

A Change in the Area and External Length of the Shape of Sleeve according to Arm Movements (팔 동작에 따른 소매의 착의 면적 및 외관 길이 변화)

  • Lee, Myung-Hee
    • Fashion & Textile Research Journal
    • /
    • v.12 no.5
    • /
    • pp.619-625
    • /
    • 2010
  • The purpose of this research is to analyze the shapes of blouse with above-elbow sleeves according to arm movements. The shapes include five types of the arm movement(basic posture, reach forward 45, 90, and reach lateral 45, 90) in the stand-posture, which were made by different adaptability of clothes. Experiments were conducted to figure out the dressed shape through 3-D measurement Vivid 910, and also to investigate the area of the shape of sleeves on the section map and the diagonal length of the block made by the basic section line in lateral part of sleeve with Rapid Form 2004, a software for 3-D shape analysis. The Data were analyzed by factor analysis, Anova, Duncan test, t-test. The results of this study were as follows: First, the area of sleeve was briefed 3 factor; front, center, back in sleeve. Second, there were different effect of arm movement, section level and part of shapes in the area of sleeve. Third, the diagonal length was briefed 4 factor; back, back-center, front-center, front. Forth, after t-test, there were statistically significant between the reach forward and lateral and between the angles of arm reach.

Mouth Shape Trajectory Generation Using Hangul Phoneme Analysis (한글 음절 분류를 통한 입 모양 궤적 생성)

  • 박유신;김종수;김태용;최종수
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.53-56
    • /
    • 2003
  • In this paper, we propose a new method which generates the trajectory of the mouth shape for the characters by the user inputs. It is based on the character at a basis syllable and can be suitable to the mouth shape generation. In this paper, we understand the principle of the Korean language creation and find the similarity for the form of the mouth shape and select it as a basic syllable. We also consider the articulation of this phoneme for it and create a new mouth shape trajectory and apply at face of an 3D avatar.

  • PDF

3D Face Alignment and Normalization Based on Feature Detection Using Active Shape Models : Quantitative Analysis on Aligning Process (ASMs을 이용한 특징점 추출에 기반한 3D 얼굴데이터의 정렬 및 정규화 : 정렬 과정에 대한 정량적 분석)

  • Shin, Dong-Won;Park, Sang-Jun;Ko, Jae-Pil
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.6
    • /
    • pp.403-411
    • /
    • 2008
  • The alignment of facial images is crucial for 2D face recognition. This is the same to facial meshes for 3D face recognition. Most of the 3D face recognition methods refer to 3D alignment but do not describe their approaches in details. In this paper, we focus on describing an automatic 3D alignment in viewpoint of quantitative analysis. This paper presents a framework of 3D face alignment and normalization based on feature points obtained by Active Shape Models (ASMs). The positions of eyes and mouth can give possibility of aligning the 3D face exactly in three-dimension space. The rotational transform on each axis is defined with respect to the reference position. In aligning process, the rotational transform converts an input 3D faces with large pose variations to the reference frontal view. The part of face is flopped from the aligned face using the sphere region centered at the nose tip of 3D face. The cropped face is shifted and brought into the frame with specified size for normalizing. Subsequently, the interpolation is carried to the face for sampling at equal interval and filling holes. The color interpolation is also carried at the same interval. The outputs are normalized 2D and 3D face which can be used for face recognition. Finally, we carry two sets of experiments to measure aligning errors and evaluate the performance of suggested process.

Development of Shape Optimization System using Stress Control (응력 제어를 통한 형상 최적화 시스템 개발)

  • 한석영;배현우
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.3
    • /
    • pp.52-58
    • /
    • 1999
  • In this study, the growth-strain method was used for shape optimization. The adequate value of growth ratio in the method was used the value obtained by volume control. And the linear PID control theory was applied to control internal stresses by stresses required by a designer. The effect of the values of $K_{P}$, $K_{I}$, and $K_{D}$ was investigated and the adequate values of $K_{P}$, $K_{I}$, and $K_{D}$ were determined empirically. Finally, a shape optimal design system was built up by the improved the growth-strain method with a commercial software I-DEAS. The effectiveness and practicality of the developed shape optimal design system was verified by some examples.les.les.les.

  • PDF

Development of a Korean Red-Ginseng’s Shape Sorting System Using Image Processing (영상처리를 이용한 홍삼의 외형선별 시스템 개발)

  • 장요한;장동일;방승훈
    • Journal of Biosystems Engineering
    • /
    • v.26 no.3
    • /
    • pp.279-286
    • /
    • 2001
  • The purpose of this study were to organize a sorting system, to develop an algorithm of image processing for the shape sorting, and to finally develop a scientific and objective shape sorting system of Korean Red-Ginseng for mechanization of the shape sorting. The results of this study are followed. 1. The shape sorting system of Korean Red-Ginseng consists of a control computer, a color CCD camera(WV-CP4110) for image processing, an image processing board(DT3153), and an image acquisition unit. 2. Many image processing skill, such as sliding, stretching, threshold, binary and D$\sub$t/ were used to analyze the shape sorting factors of Korean Red-ginseng. 3. The sorting accuracy of the shape sorting system for the Korean Red-Ginseng was 74.7%. It is 21.1% lower than that of human inspector. Although the system has low accuracy, using more cameras may improve its sorting accuracy.

  • PDF

Shape Adaptive Searching Region to Find Focused Image Points in 3D Shape Reconstruction (3차원 형체복원에 있어서 측정면에 적응적인 초점화소 탐색영역 결정기법)

  • 김현태;한문용;홍민철;차형태;한헌수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.77-77
    • /
    • 2000
  • The shape of small or curved object is usually reconstructed using a single camera by moving its lens position to find a sequence of the focused images. Most conventional methods have used a window with fixed shape to test the focus measure, which resulted in a deterioration of accuracy. To solve this problem, this paper proposes a new approach of using a shape adaptive window. It estimates the shape of the object at every step and applies the same shape of window to calculate the focus measure. Focus measure is based on the variance of the pixels inside the window. This paper includes the experimental results.

  • PDF

Shape Adaptive Searching Technique for Finding Focused Pixels (초점화소 탐색시간의 최소화를 위한 검색영역 결정기법)

  • Choi, Dae-Sung;Song, Pil-Jae;Kim, Hyun-Tae;Hahn, Hern-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.151-159
    • /
    • 2002
  • The method of accumulating a sequence of focused images is usually used for reconstruction of 3D object\\`s shape. To acquire a focused image, the conventional methods must calculate the focus measures of all pixels resulting in a long measurement time. This paper proposes a new method of reducing the computation time spent for deciding the focused pixels in the input image, which predicts the area in the image to calculate the focus measure based on a priori information on the object to be measured. The proposed algorithm estimates the area to consider in the next measurement based on the focused area in the present measurement. As the focus measure, Laplacian measure was used in this paper and the experiments have shown that the preposed algorithm may significantly reduce the calculation time. Although, as implied, this algorithm can be applied to only simple objects at this stage, advanced representation schemes will eliminate the restrictions on application domain.

Development and Performance Evaluation of Hybrid Measuring Instrument (하이브리드 측정기의 개발 및 성능평가)

  • Lee, Young-Ho;Park, Gi-Bum;Cho, Young-Tae;Lee, Eung-Suk;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.69-75
    • /
    • 2017
  • There are two types of expensive measuring instruments currently on the market shape measurement and roundness measurement instruments. As they are very expensive, from tens of millions to more than 200 million won, buying them is economically burdensome for small companies or individuals. Therefore, in order to integrate the shape and roundness measurements into a single transfer device, this study aimed to reduce the trial and error by 3D modeling and simulation, and we confirmed the feasibility of operation. Based on these outcomes, a prototype hybrid measuring instrument was fabricated. As a result of performance evaluation and comparative evaluation, we verified the feasibility of implementation and application of the hybrid measuring instrument.

Fabrication of three-dimensional electrical patterns by swollen-off process: An evolution of the lift-off process

  • Mansouri, Mariam S.;An, Boo Hyun;Shibli, Hamda Al;Yassi, Hamad Al;Alkindi, Tawaddod Saif;Lee, Ji Sung;Kim, Young Keun;Ryu, Jong Eun;Choi, Daniel S.
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1235-1239
    • /
    • 2018
  • We present a novel process to fabricate three-dimensional (3D) metallic patterns from 3D printed polymeric structures utilizing different hygroscopic swelling behavior of two different polymeric materials. 3D patterns are printed with two different polymers as cube shape. The surface of the 3D printed polymeric structures is plated with nickel by an electroless plating method. The nickel patterns on the surface of the 3D printed cube shape structure are formed by removing sacrificial layers using the difference in the rate of hygroscopic swelling between two printing polymer materials. The hygroscopic behavior on the interfaced structure was modeled with COMSOL Multiphysics. The surface and electrical properties of the fabricated three-dimensional patterns were analyzed and characterized.