• Title/Summary/Keyword: 3D resolution

Search Result 1,570, Processing Time 0.029 seconds

지표 물리탐사법을 이용한 염/담수 영역의 고분해능 영상화

  • 박권규;신제현;박윤성;황세호
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.446-449
    • /
    • 2004
  • High resolution geophysical imaging to delineate costal aquifer and seawater- freshwater interface has been applied in Baesu-eup, Yeonggwang-gun, Jeolla province Electrical resistivity information from vertical electrical sounding and 2-D electrical resistivity survey is key parameter to map equivalent Nacl concentration map over the survey area. Seismic velocity from refraction tomographic survey, on the other hand, gives more reliable information on the subsurface stratagraphy than electrical resistivity methods which frequently suffer from low resolution due to masking effect. We imaged high-resolution 3-D structure of costal aquifer by correlating the electrical resistivity with seismic velocity, and mapped equivalent NaCl concentration map using resistivity and hydro-geological information from well logging.

  • PDF

RECONSTRUCTING A SUPER-RESOLUTION IMAGE FOR DEPTH-VARYING SCENES

  • Yokoyamay, Ami;Kubotaz, Akira;Hatoriz, Yoshinori
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.446-449
    • /
    • 2009
  • In this paper, we present a novel method for reconstructing a super-resolution image using multi-view low-resolution images captured for depth varying scene without requiring complex analysis such as depth estimation and feature matching. The proposed method is based on the iterative back projection technique that is extended to the 3D volume domain (i.e., space + depth), unlike the conventional superresolution methods that handle only 2D translation among captured images.

  • PDF

High Spatial Resolution Satellite Image Simulation Based on 3D Data and Existing Images

  • La, Phu Hien;Jeon, Min Cheol;Eo, Yang Dam;Nguyen, Quang Minh;Lee, Mi Hee;Pyeon, Mu Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.2
    • /
    • pp.121-132
    • /
    • 2016
  • This study proposes an approach for simulating high spatial resolution satellite images acquired under arbitrary sun-sensor geometry using existing images and 3D (three-dimensional) data. First, satellite images, having significant differences in spectral regions compared with those in the simulated image were transformed to the same spectral regions as those in simulated image by using the UPDM (Universal Pattern Decomposition Method). Simultaneously, shadows cast by buildings or high features under the new sun position were modeled. Then, pixels that changed from shadow into non-shadow areas and vice versa were simulated on the basis of existing images. Finally, buildings that were viewed under the new sensor position were modeled on the basis of open library-based 3D reconstruction program. An experiment was conducted to simulate WV-3 (WorldView-3) images acquired under two different sun-sensor geometries based on a Pleiades 1A image, an additional WV-3 image, a Landsat image, and 3D building models. The results show that the shapes of the buildings were modeled effectively, although some problems were noted in the simulation of pixels changing from shadows cast by buildings into non-shadow. Additionally, the mean reflectance of the simulated image was quite similar to that of actual images in vegetation and water areas. However, significant gaps between the mean reflectance of simulated and actual images in soil and road areas were noted, which could be attributed to differences in the moisture content.

Depth Extraction of Partially Occluded 3D Objects Using Axially Distributed Stereo Image Sensing

  • Lee, Min-Chul;Inoue, Kotaro;Konishi, Naoki;Lee, Joon-Jae
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.4
    • /
    • pp.275-279
    • /
    • 2015
  • There are several methods to record three dimensional (3D) information of objects such as lens array based integral imaging, synthetic aperture integral imaging (SAII), computer synthesized integral imaging (CSII), axially distributed image sensing (ADS), and axially distributed stereo image sensing (ADSS). ADSS method is capable of recording partially occluded 3D objects and reconstructing high-resolution slice plane images. In this paper, we present a computational method for depth extraction of partially occluded 3D objects using ADSS. In the proposed method, the high resolution elemental stereo image pairs are recorded by simply moving the stereo camera along the optical axis and the recorded elemental image pairs are used to reconstruct 3D slice images using the computational reconstruction algorithm. To extract depth information of partially occluded 3D object, we utilize the edge enhancement and simple block matching algorithm between two reconstructed slice image pair. To demonstrate the proposed method, we carry out the preliminary experiments and the results are presented.

Performance of 3D printed plastic scintillators for gamma-ray detection

  • Kim, Dong-geon;Lee, Sangmin;Park, Junesic;Son, Jaebum;Kim, Tae Hoon;Kim, Yong Hyun;Pak, Kihong;Kim, Yong Kyun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2910-2917
    • /
    • 2020
  • Digital light processing three-dimensional (3D) printing technique is a powerful tool to rapidly manufacture plastic scintillators of almost any shape or geometric features. In our previous study, the main properties of light output and transmission were analyzed. However, a more detailed study of the other properties is required to develop 3D printed plastic scintillators with expectable and reproducible properties. The 3D printed plastic scintillator displayed an average decay time constants of 15.6 ns, intrinsic energy resolution of 13.2%, and intrinsic detection efficiency of 6.81% for 477 keV Compton electrons from the 137Cs γ-ray source. The 3D printed plastic scintillator showed a similar decay time and intrinsic detection efficiency as that of a commercial plastic scintillator BC408. Furthermore, the presented estimates for the properties showed good agreement with the analyzed data.

Free-view Pixels of Elemental Image Rearrangement Technique (FPERT)

  • Lee, Jaehoon;Cho, Myungjin;Inoue, Kotaro;Tashiro, Masaharu;Lee, Min-Chul
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.1
    • /
    • pp.60-66
    • /
    • 2019
  • In this paper, we propose a new free-view three-dimensional (3D) computational reconstruction of integral imaging to improve the visual quality of reconstructed 3D images when low-resolution elemental images are used. In a conventional free-view reconstruction, the visual quality of the reconstructed 3D images is insufficient to provide 3D information to applications because of the shift and sum process. In addition, its processing speed is slow. To solve these problems, our proposed method uses a pixel rearrangement technique (PERT) with locally selective elemental images. In general, PERT can reconstruct 3D images with a high visual quality at a fast processing speed. However, PERT cannot provide a free-view reconstruction. Therefore, using our proposed method, free-view reconstructed 3D images with high visual qualities can be generated when low-resolution elemental images are used. To show the feasibility of our proposed method, we applied it to optical experiments.

Dense Thermal 3D Point Cloud Generation of Building Envelope by Drone-based Photogrammetry

  • Jo, Hyeon Jeong;Jang, Yeong Jae;Lee, Jae Wang;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.2
    • /
    • pp.73-79
    • /
    • 2021
  • Recently there are growing interests on the energy conservation and emission reduction. In the fields of architecture and civil engineering, the energy monitoring of structures is required to response the energy issues. In perspective of thermal monitoring, thermal images gains popularity for their rich visual information. With the rapid development of the drone platform, aerial thermal images acquired using drone can be used to monitor not only a part of structure, but wider coverage. In addition, the stereo photogrammetric process is expected to generate 3D point cloud with thermal information. However thermal images show very poor in resolution with narrow field of view that limit the use of drone-based thermal photogrammety. In the study, we aimed to generate 3D thermal point cloud using visible and thermal images. The visible images show high spatial resolution being able to generate precise and dense point clouds. Then we extract thermal information from thermal images to assign them onto the point clouds by precisely establishing photogrammetric collinearity between the point clouds and thermal images. From the experiment, we successfully generate dense 3D thermal point cloud showing 3D thermal distribution over the building structure.

ASPPMVSNet: A high-receptive-field multiview stereo network for dense three-dimensional reconstruction

  • Saleh Saeed;Sungjun Lee;Yongju Cho;Unsang Park
    • ETRI Journal
    • /
    • v.44 no.6
    • /
    • pp.1034-1046
    • /
    • 2022
  • The learning-based multiview stereo (MVS) methods for three-dimensional (3D) reconstruction generally use 3D volumes for depth inference. The quality of the reconstructed depth maps and the corresponding point clouds is directly influenced by the spatial resolution of the 3D volume. Consequently, these methods produce point clouds with sparse local regions because of the lack of the memory required to encode a high volume of information. Here, we apply the atrous spatial pyramid pooling (ASPP) module in MVS methods to obtain dense feature maps with multiscale, long-range, contextual information using high receptive fields. For a given 3D volume with the same spatial resolution as that in the MVS methods, the dense feature maps from the ASPP module encoded with superior information can produce dense point clouds without a high memory footprint. Furthermore, we propose a 3D loss for training the MVS networks, which improves the predicted depth values by 24.44%. The ASPP module provides state-of-the-art qualitative results by constructing relatively dense point clouds, which improves the DTU MVS dataset benchmarks by 2.25% compared with those achieved in the previous MVS methods.

The Method of Reducing Echo Time in 3D Time-of-flight Angiography

  • Park, Sung-Hong;Park, Jung-Il;Lee, Heung-Kyu
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.367-369
    • /
    • 2002
  • We have designed ramp profile excitation pulse based on the Shinnar-Le Roux (SLR) algorithm. The algorithm provides many advantages to pulse designers. The first advantage is the freedom of deciding the amplitudes, frequencies, and ripple sizes of stopband, passband, and transition band of pulse profile. The second advantage is the freedom of deciding the pulse phase, more specifically, minimum phase, linear phase, maximum phase, and any phase between them. The minimum phase pulse is the best choice in the case of 3D TOF, because it minimizes the echo time, which implies the best image quality in the same MR examination condition. In addition, the half echo technique is slightly modified in our case. In general, using the half echo technique means that the acquired data size is half and the rest part can be filled with complex conjugate of acquired data. But in our case, the echo center is just shifted to left, which implies the reduction of echo time, and the acquired data size is the same as the one without using the half echo technique. In this case, the increase of right part of data leads to improvement of the resolution and the decrease of left part of data leads to decrease of signal to noise ratio. Since in the case of 3D TOF, the signal to noise ratio is sufficiently high and the resolution is more important than signal to noise ratio, the proposed method appears to be significantly affective and gives rise to the improved high resolution angiograms.

  • PDF

Optical implementation of 3D image correlator using integral imaging technique (집적영상 기술을 이용한 3D 영상 상관기의 광학적 구현)

  • Piao, Yongri;Kim, Seok-Tae;Kim, Eun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.8
    • /
    • pp.1659-1665
    • /
    • 2009
  • In this paper, we propose an implementation method of 3D image correlator using integral imaging technique. In the proposed method, elemental images of the reference and signal 3D objects are recorded by lenslet arrays and then reference and signal output plane images with high resolution are optically reconstructed on the output plane by displaying these elemental images into a display panel. Through cross-correlations between the reconstructed reference and the single plane images, 3D object recognition is performed. The proposed method can provide a precise 3D object recognition by using the high-resolution output plane images compared with the previous methods and implement all-optical structure for real-time 3D object recognition system. To show the feasibility of the proposed method, optical experiments are carried out and the results are presented.