The Method of Reducing Echo Time in 3D Time-of-flight Angiography

  • Published : 2002.09.01

Abstract

We have designed ramp profile excitation pulse based on the Shinnar-Le Roux (SLR) algorithm. The algorithm provides many advantages to pulse designers. The first advantage is the freedom of deciding the amplitudes, frequencies, and ripple sizes of stopband, passband, and transition band of pulse profile. The second advantage is the freedom of deciding the pulse phase, more specifically, minimum phase, linear phase, maximum phase, and any phase between them. The minimum phase pulse is the best choice in the case of 3D TOF, because it minimizes the echo time, which implies the best image quality in the same MR examination condition. In addition, the half echo technique is slightly modified in our case. In general, using the half echo technique means that the acquired data size is half and the rest part can be filled with complex conjugate of acquired data. But in our case, the echo center is just shifted to left, which implies the reduction of echo time, and the acquired data size is the same as the one without using the half echo technique. In this case, the increase of right part of data leads to improvement of the resolution and the decrease of left part of data leads to decrease of signal to noise ratio. Since in the case of 3D TOF, the signal to noise ratio is sufficiently high and the resolution is more important than signal to noise ratio, the proposed method appears to be significantly affective and gives rise to the improved high resolution angiograms.

Keywords