Browse > Article
http://dx.doi.org/10.1016/j.net.2020.05.030

Performance of 3D printed plastic scintillators for gamma-ray detection  

Kim, Dong-geon (Department of Nuclear Engineering, Hanyang University)
Lee, Sangmin (Department of Nuclear Engineering, Hanyang University)
Park, Junesic (Department of Nuclear Engineering, Hanyang University)
Son, Jaebum (Department of Nuclear Engineering, Hanyang University)
Kim, Tae Hoon (Department of Nuclear Engineering, Hanyang University)
Kim, Yong Hyun (Department of Nuclear Engineering, Hanyang University)
Pak, Kihong (Department of Nuclear Engineering, Hanyang University)
Kim, Yong Kyun (Department of Nuclear Engineering, Hanyang University)
Publication Information
Nuclear Engineering and Technology / v.52, no.12, 2020 , pp. 2910-2917 More about this Journal
Abstract
Digital light processing three-dimensional (3D) printing technique is a powerful tool to rapidly manufacture plastic scintillators of almost any shape or geometric features. In our previous study, the main properties of light output and transmission were analyzed. However, a more detailed study of the other properties is required to develop 3D printed plastic scintillators with expectable and reproducible properties. The 3D printed plastic scintillator displayed an average decay time constants of 15.6 ns, intrinsic energy resolution of 13.2%, and intrinsic detection efficiency of 6.81% for 477 keV Compton electrons from the 137Cs γ-ray source. The 3D printed plastic scintillator showed a similar decay time and intrinsic detection efficiency as that of a commercial plastic scintillator BC408. Furthermore, the presented estimates for the properties showed good agreement with the analyzed data.
Keywords
3D printing; Plastic scintillator; Gamma-ray detection; Decay time; Energy resolution; Detection efficiency;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 G.A. Dosovitskiy, P.V. Karpyuk, P.V. Evdokimov, D.E. Kuznetsova, V.A. Mechinsky, A.E. Borisevich, A.A. Fedorov, V.I. Putlayev, A.E. Dosovitskiy, M.V. Korjik, First 3D-printed complex inorganic polycrystalline scintillator, CrystEngComm 19 (2017) 4260-4264, https://doi.org/10.1039/c7ce00541e.   DOI
2 S. Hu, Y. Liu, Y. Zhang, Z. Xue, Z. Wang, G. Zhou, C. Lu, H. Li, S. Wang, 3D printed ceramic phosphor and the photoluminescence property under blue laser excitation, J. Eur. Ceram. Soc. 39 (2019) 2731-2738, https://doi.org/10.1016/j.jeurceramsoc.2019.03.005.   DOI
3 Y. Mishnayot, M. Layani, I. Cooperstein, S. Magdassi, G. Ron, Three-dimensional printing of scintillating materials, Rev. Sci. Instrum. 85 (2014), 085102, https://doi.org/10.1063/1.4891703.   DOI
4 V.N. Bliznyuk, A.F. Seliman, A.A. Ishchenko, N.A. Derevyanko, T.A. Devol, New efficient organic scintillators derived from pyrazoline, ACS Appl. Mater. Interfaces 8 (2016) 12843-12851, https://doi.org/10.1021/acsami.6b02719.   DOI
5 M.D. Petroff, M. Attac, High energy particle tracking using scintillating fibers and solid state photomultiplier, IEEE Trans. Nucl. Sci. 36 (1989) 163-164, doi: ieeexplore.ieee.org/document/34425.
6 S. Lee, J. Son, D.G. Kim, J. Choi, Y.K. Kim, Characterization of plastic scintillator fabricated by UV LED curing machine, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 929 (2019) 23-28, https://doi.org/10.1016/j.nima.2019.03.048.   DOI
7 A. Moiseev, E. Ferrara, R. Ojha, A. Smith, E. Hays, J.W. Mitchell, J. McEnery, J. Perkins, J. Racusin, D. Thompson, J. Buckley, R. Caputo, M. Ajello, D.H. Hartmann, Extending fermi LAT discoveries: Compton-pair production space telescope (ComPair) for MeV gamma-ray astronomy, in: International Cosmic Ray Conference, Hague, Netherlands, July 30 to August 6, 2015.
8 G. Dietze, Energy calibration OF NE-213 scintillation counters BY gamma-rays, IEEE Trans. Nucl. Sci. 26 (1) (1979) 398-402, https://doi.org/10.1109/TNS.1979.4329665.   DOI
9 D.G. Kim, J. Park, J. Son, S. Lee, S.J. Seon, J.Y. Jeong, Y.K. Kim, Light output analysis of 3D printed plastic scintillator, in: Transaction of the Korean Nuclear Society Autumn Meeting, Yeosu, Korea, October 25-26, 2018.
10 G. Dietze, H. Klein, Gamma-calibration of NE 213 scintillation counters, Nucl. Instrum. Methods 193 (1982) 549-556, https://doi.org/10.1016/0029-554X(82)90249-X.   DOI
11 NIST. https://www.nist.gov.
12 T.S.A. Underwood, B.C. Rowland, R. Ferrand, L. Vieillevigne, Application of the Exradin W1 scintillator to determine Ediode 60017 and microDiamond 60019 correction factors for relative dosimetry within small MV and FFF fields, Phys. Med. Biol. 60 (2015) 6669-6683, https://doi.org/10.1088/0031-9155/60/17/6669.   DOI
13 S.W. Moser, W.F. Harder, C.R. Hurlbut, M.R. Kusner, Principles and practice of plastic scintillator design, Radiat. Phys. Chem. 41 (1993) 31-36, https://doi.org/10.1016/0969-806X(93)90039-W.   DOI
14 L.M. Bollinger, G.E. Thomas, Measurement of the time dependence of scintillation intensity by a delayed-coincidence method, Rev. Sci. Instrum. 32 (1961) 1044-1050, https://doi.org/10.1063/1.1717610.   DOI
15 S. Fargher, C. Steer, L. Thompson, The use of 3D printing in the development of gaseous radiation detectors, in: Advancements in Nuclear Instrumentation Measurement Methods and Their Applications, Liege, Belgium, June 19-23, 2017.
16 3D printing industry. https://3dprintingindustry.com/news/teen-nuclearphysicist-builds-geiger-counter-with-3d-printed-parts-53696/.
17 A. Pla-Dalmau, A.D. Bross, K.L. Mellott, Low-cost extruded plastic scintillator, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 466 (2001) 482-491, https://doi.org/10.1016/S0168-9002(01)00177-2.   DOI
18 G.F. Knoll, Radiation Detection and Measurement, John Wiley & Sons, New York, 2010.
19 M. Atac, J. Park, D. Cline, D. Chrisman, M. Petroff, E. Anderson, Scintillating fiber tracking for the SSC using visible light photon counters, Nucl. Instrum. Methods Phys. Res. A. 314 (1992) 56-62, https://doi.org/10.1016/0168-9002(92)90498-S.   DOI
20 P. Carrasco, N. Jornet, O. Jordi, M. Lizondo, A. Latorre-Musoll, T. Eudaldo, A. Ruiz, M. Ribas, Characterization of the ExradinW1 scintillator for use in radiotherapy, Med. Phys. 42 (2015) 297-304, https://doi.org/10.1118/1.4903757.   DOI
21 C.H. Lee, J. Son, T.H. Kim, Y.K. Kim, Characteristics of plastic scintillators fabricated by a polymerization reaction, Nucl. Eng. Technol. 49 (2017) 592-597, https://doi.org/10.1016/j.net.2016.10.001.   DOI
22 J. Son, D.G. Kim, S. Lee, J. Park, Y. Kim, T. Schaarschmidt, Y.K. Kim, Improved 3D printing plastic scintillator fabrication, J. Kor. Phys. Soc. 73 (2018) 887-892, https://doi.org/10.3938/jkps.73.887.   DOI
23 M. Hamel, C. Dehe-Pittance, R. Coulon, F. Carrel, P. Pillot, E. Barat, T. Dautremer, T. Montagu, S. Normand, Gammastic: towards a pseudo-gamma spectrometry in plastic scintillators, in: Advancements in Nuclear Instrumentation Measurement Methods and Their Applications, Marseille, France, June 23-27, 2013.
24 Saint gobain crystal. https://www.crystals.saint-gobain.com.
25 B.D. Geelhood, J.H. Ely, R.R. Hansen, R.T. Kouzes, J.E. Schweppe, R.A. Warner, Overview of portal monitoring at border crossings, in: IEEE Nuclear Science Symposium, Medical Imaging Conference, Oregon, U.S.A, 2003. October 20-24.
26 T.M. Undagoitia, F.V. Feilitzsch, L. Oberauer, W. Potzel, A. Ulrich, J. Winter, M. Wurm, Fluorescence decay-time constants in organic liquid scintillators, Rev. Sci. Instrum. 80 (2009), 043301, https://doi.org/10.1063/1.3112609.   DOI
27 K. Roemer, G. Pausch, C.M. Herbach, Y. Kong, R. Lentering, C. Plettner, J. Stein, M. Moszynski, L. Swiderski, T. Szczesniak, A technique for measuring the energy resolution of low-Z scintillators, IEEE Nucl. Sci. Symp. Conf. Rec. (2009) 6-11, https://doi.org/10.1109/NSSMIC.2009.5401909.   DOI
28 ASIGA. https://www.asiga.com.
29 P. Dorenbos, J.T.D. de Haas, C.W.V. van Eijk, Non-proportionality in the scintillation response and the energy resolution obtainable with scintillation crystals, IEEE Trans. Nucl. Sci. 42 (1995) 2190-2202, https://doi.org/10.1109/23.489415.   DOI
30 W. Becker, Advanced Time-Correlated Single Photon Counting Techniques, Springer, Berlin, 2005.
31 D.B. Pelowitz, MCNPXTM USER'S MANUAL 2.7.0 Version, Los Alamos Natl. Lab., 2011, pp. 1-645. LA-CP-05-0369.
32 J.B. Birks, The Theory and Practice of Scintillation Counting, Pergamon Press, 1964.
33 L. Swiderski, R. Marcinkowski, M. Moszynski, W. Czarnacki, M. Szawlowski, T. Szczesniak, G. Pausch, C. Plettner, K. Roemer, Electron response of some low-Z scintillators in wide energy range, J. Instrum. 7 (2012) P06011, https://doi.org/10.1088/1748-0221/7/06/P06011.   DOI
34 A. Nassalski, M. Moszynski, A. Syntfeld-Kazuch, L. Swiderski, T. Szczesniak, Non-proportionality of organic scintillators and BGO, IEEE Trans. Nucl. Sci. 55 (3) (2008) 1069-1072, https://doi.org/10.1109/TNS.2008.2012282.   DOI