• Title/Summary/Keyword: 3D printing resin

Search Result 106, Processing Time 0.031 seconds

Evaluation of Flexural Strength of 3D Printing Resin According to Post-Curing Equipment and Time (후경화기와 경화시간에 따른 3D 프린팅 레진의 굴곡강도 평가)

  • Hae-Bom Kim;Jae-Won Choi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.629-637
    • /
    • 2023
  • This study aimed to evaluate the effect of post-curing equipment and time on the flexural strength of 3D printing resins produced by a liquid crystal display(LCD) printer. The three 3D printing resins(DENTCA Denture Teeth, DT; C&B 5.0 hybrid, CH; C&B Permanent A2, CP) were divided into four groups according to post-curing time(10 min and 30 min) and equipment with or without vacuum treatment. For the three-point flexural strength test and biaxial strength test were prepared by method according to ISO 10477, ISO 6872, respectively. Flexural strength was measured with universal testing machine. Comparison between post-curing time of each post-curing equipment was analyzed by independent sample t-test and Mann-Whitney U test(α=.05), and comparison between groups according to each 3D printing resin was performed by Kruskal-Wallis test and post-hoc by Bonferroni-Dunn test(α=.05). The flexural strength of the resin post-curing under vacuum was higher than that of the resin post-curing in air. In the comparison according to the post-curing time, in the case of the post-curing equipment without vacuum, the 30 minute curing time showed significantly higher flexural strength than the 10 minute curing time, except for the biaxial flexural strength of CH(P<.05). In the post-curing equipment with vacuum, the three-point flexural strength of all 3D printing resins(DT, CH, and CP) showed a higher value at 30 minute curing time than at 10 minute curing time.

A case of removable dentures using digital method (디지털 방식을 이용하여 제작한 양악 가철성 의치 수복 증례)

  • Lee, Ji-Soo;Ahn, Su-Jin;Leesungbok, Richard;Lee, Suk-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.3
    • /
    • pp.250-257
    • /
    • 2018
  • Generally dentures are manufactured by conventional method, however the frequency of fabricating denture using digital method is increasing due to the recent development of digital technology in dentistry. The digital method of manufacturing denture is classified into two systems; 3D scan of the impression to arrange the artificial teeth on the CAD (Computer-aided design) and 3D printing to produce the resin-based complete denture, or 3D scan of the model to design of the framework using CAD, resin pattern formation by 3D printing and casting of metal framework of complete denture or removable partial denture. In this case report, electronic surveying and design the metal framework of the dentures were performed using CAD program, and plastic resin patterns fabricated by 3D printing were casted for upper full denture and lower removable partial denture. During follow-up periods, dentures using digital method have provided satisfactory results esthetically and functionally.

Accuracy Verification of 3D printing model by Using Domestic Oral Scanner(eZIS) (국내산 구강스캐너(eZIS)를 사용한 3D프린트 모형의 정확도 검증 실험)

  • Byun, Tae-hee;Nam, Min-kyung;Kim, Jung-ho;Kim, Busob
    • Journal of Technologic Dentistry
    • /
    • v.40 no.3
    • /
    • pp.115-123
    • /
    • 2018
  • Purpose: The purpose of this study was establishing process of manufacturing dental prosthesis by using eZIS system(DDS Inc.,Korea). Methods: To evaluate accuracy verification, the test was practiced two ways. First, Comparison of 3D printing models and stone models was practiced by using 3D superimposing software. #36 prepared master model was scanned by eZIS system and three 'Veltz3D' 3D printing models and three 'Bio3D' 3D printing models were manufactured. three stone models were manufactured by conventional impression technique. Second, Fitness test was practiced. the 3D printing models and the stone models was compared by manufacturing same resin crown. #36 prepared master model was scanned 9 times and manufactured (milled) 9 resin crowns by eZIS system. These crowns were cemented three 'Veltz3D' 3D printing models, three 'Bio3D' 3D printing models and three stone models. These crowns were sliced mesiodistal axis and gaps were measured by digital microscope. Results: The average accuracy of Bio3D models were 65.75%. Veltz3D(Hebsiba) models were 60.11% Stone models were 41.00%. Conclusion : This study results showed 3D printing model is similar with stone model. So it was under clinical allow, didn't affect final dental prothesis. There were no significant differences in the appearance of the three types of milling crowns.

Effect of surface treatment on shear bond strength between artificial resin teeth and 3D printing denture base resin (인공치의 표면처리가 3D 프린팅 의치상레진과의 전단결합강도에 미치는 영향)

  • Choi, Jeehye;Lee, Younghoo;Hong, Seoung-jin;Paek, Janghyun;Noh, Kwantae;Pae, Ahran;Kwon, Kung-Rock;Kim, Hyeong-Seob
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.4
    • /
    • pp.300-305
    • /
    • 2020
  • Purpose: The purpose of this study is to compare the shear bond strength of 3D printing denture base resin according to surface treatment of artificial teeth. Materials and methods: 3D printing denture base resin was fabricated as specimens using 3D printer. The experimental group divided the surface treatment of artificial teeth into five groups according to the application of sandblasting and primer (n=10). Shear bond strengths between denture base and artificial teeth were measured by universal testing machine. All measurements were analyzed by one-way ANOVA and Turkey test (α=.05). Fracture mode of each specimen was analyzed. Microscopic evaluation was conducted by using a scanning electron microscope. Results: Unsurfaced treated group represented the lowest value. The primer groups had significantly higher result values (P<.05). Most specimens of the primer groups had cohesive failure. Conclusion: In 3D printing denture base resin group, mechanical and chemical surface treatment of artificial teeth has increased the shear bond strength. Therefore, if dentures are produced using 3D printing, proper mechanical and chemical treatment of artificial teeth is necessary for adhesion of dentures and artificial teeth.

An evaluation of quality of dental prostheses printed by dental 3-dimensional printing system (치과용 3D 프린팅 시스템에 의해 출력된 보철물의 품질 평가)

  • Han, Man-So
    • Journal of Technologic Dentistry
    • /
    • v.38 no.3
    • /
    • pp.185-191
    • /
    • 2016
  • Purpose: The purpose of this study were to evaluate the quality of dental prostheses printed by 3-dimensional printing system. Methods: Mater model was prepared and ten study models were fabricated. Ten single crowns were printed by 3D-printing system(Resin group) and another ten single crowns using casting method were manufactured(Metal group). The marginal adaptation of single crowns were measured using by silicone replica technique. Silicone replicas were sectioned four times. The marginal adaptations were evaluated using by digital microscope. Statistical analyses were performed with Mann-Whitney test(${\alpha}=0.05$). Results: $Mean{\pm}standard$ deviations of all marginal adaptations were $92.1(20.0){\mu}m$ for Metal group and $69.7(12.3){\mu}m$ for Resin group. Two groups were no statistically significant differences(p>0.05). Conclusion: Marginal adaptation of single crowns printed by 3D-printing system were ranged within the clinical recommendation.

Evaluation of Modeling Design and Dyeability of DLP 3D Printed Textiles (DLP 3D Printed Textile의 유연성 향상을 위한 모델링 디자인 및 염색성 평가)

  • Shim, Yeon Je;Kim, Hyunjin;Kim, Hye Rim
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.3
    • /
    • pp.375-389
    • /
    • 2022
  • 3D printing has been considered a key technology, leading the fourth industrial revolution. However, 3D printed textile still has a lot of limitations to overcome before it can be adopted as a clothing material in terms of design, flexibility and dyeability. This study aims to provide modeling design for imparting the flexibility and post-dyeing process for 3D printed textiles. The modeling types were designed to test the flexibility of 3D printed textiles. The post-dyeing process was evaluated through dye absorption depending on the resin and modeling types, respectively. The results were as follows: two types of modeling (Modeling A and B) were designed with a ring structure to test the flexibility of the 3D printed textiles. The 3D printed textiles with ring-based structure Modeling A had flexibility regardless of the hardness of resin types. In the dyeability test, softening resin (S-Resin) and hardening resin (H-Resin) were found to have good dyeability with acid dye and direct dye, respectively. The condition of S-Resin with acid dye and H-Resin with direct dye was controlled by dye absorption rate.

Comparative study of flexural strength of temporary restorative resin according to surface polishing and fabrication methods (표면연마와 제작방법에 따른 임시 수복용 레진의 굽힘강도에 관한 비교 연구)

  • Lim, Jae-Hun;Lee, Jae-In
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.37 no.1
    • /
    • pp.16-22
    • /
    • 2021
  • Purpose: The purpose of this study is to investigate the effect of surface polishing and fabrication method on the flexural strength of temporary restorative resin. Materials and Methods: Each of four fabrication methods was used to make 30 temporary restorative resin specimens and the specimens were divided into two groups depending on whether they were polished by mechanical polishing. Specimens were stored in 37℃ thermostat for 24 hours. Flexural strength was measured using a universal testing machine (UTM). The data obtained through the experiment were analyzed with Two-way ANOVA, Tukey's HSD test and Paired t-test. Results: CAD/CAM milling group showed the highest flexural strength regardless of surface polishing. In decreasing order, the flexural strength of the other fabrication method group was as follows SLA 3D printing, DLP 3D printing, and Conventional method group. Conclusion: Surface polishing did not affect flexural strength of the temporary restorative resin (P > 0.05). However, there were statistically significant differences in flexural strength depending on fabrication method (P < 0.05).

A Study on the Applicability of 3D Ceramic Printing Technology for Restoration of the Missing Part of Damaged Ceramics (훼손 도자기 결실부 복원을 위한 3D 세라믹 프린팅 기술의 기초 적용성 연구)

  • Oh, Seung-Jun;Wi, Koang-Chul
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.165-173
    • /
    • 2020
  • ABS and PLA are applied for restoring missing part of damaged ceramics, but are not similar to the material of ceramics, so this study conducted a research on the properties and applicability of ceramic resin. This study conducted actual restoration of ABS and ceramic resin as well as cast restoration method with experiment of properties. Results show that manufacturing of restored part showed higher precision than existing materials, which enables printing of tiny shapes showing excellent surface texture and gloss than L30 and ABS resin. As a result of measuring properties, the material showed excellent durability than existing materials with no contraction and deformation and compressive strength, but value of specific gravity and hardness can lower processability after manufacturing. Long-term monitoring, evaluation of reliability of ceramic resin applied in this study, additional researches on the restorability of the original shape when printing too thin or long restored part are needed.

Assessment of Internal Fitness on Resin Crown Fabricated by Digital Light Processing 3D Printer

  • Kang, Wol;Kim, Min-Su;Kim, Won-Gi
    • Journal of dental hygiene science
    • /
    • v.19 no.4
    • /
    • pp.238-244
    • /
    • 2019
  • Background: Recently, three-dimensional (3D) printing has been hailed as a disruptive technology in dentistry. Among 3D printers, a digital light processing (DLP) 3D printer has certain advantages, such as high precision and relatively low cost. Therefore, the latest trend in resin crown manufacturing is the use of DLP 3D printers. However, studies on the internal fitness of such resin crowns are insufficient. The recently introduced 3D evaluation method makes it possible to visually evaluate the error of the desired area. The purpose of this study is to evaluate the internal fitness of resin crowns fabricated a by DLP 3D printer using the 3D evaluation method. Methods: The working model was chosen as the maxillary molar implant model. A total of 20 resin crowns were manufactured by dividing these into two groups. One group was manufactured by subtractive manufacturing system (PMMA), while the other group was manufactured by additive manufacturing system, which uses a DLP 3D printer. Resin crowns data were measured using a 3D evaluation program. Internal fitness was calculated by root mean square (RMS). The RMS was calculated using the Geomagic Verify software, and the mean and standard deviation (SD) were measured. For statistical analysis, IBM SPSS Statistics for Windows ver. 22.0 (IBM Corp., USA) was used. Then, independent t-test was performed between the two groups. Results: The mean±SD of the RMS were 41.51±1.51 and 43.09±2.32 for PMMA and DLP, respectively. There was no statistically significant difference between PMMA and DLP. Conclusion: Evaluation of internal fitness of the resin crown made using a DLP 3D printer and subtractive manufacturing system showed no statistically significant differences, and clinically acceptable results were obtained.

The build angle of 3D printing denture base resin on candida albicans adhesion. (의치상레진의 3D 프린팅 출력 각도가 Candida albicans의 부착에 미치는 영향)

  • Park, Su-Jung;Song, Young-Gyun
    • The Journal of the Korean dental association
    • /
    • v.58 no.1
    • /
    • pp.19-26
    • /
    • 2019
  • Purpose: The purpose of this study is to compare the adhesion of Candida albicans according to build angle in 3D printing denture base resin. Methods: The 3D printing was performed by setting the build angle of the disk type specimen designed by CAD program at 0 degree, 30 degrees, 60 degrees, and 90 degrees. Surface roughness was measured using a non-contact 3D microsurface profiler. The specimens were incubated in Candida albicans suspension for 24 hours. The attached Candida albicans were detached by cell scraper. The suspension of detached C. albicans was serially diluted and plated on Trypticase soy broth. After 48 hours of incubation, total colony forming unit was counted. Results: There was no significant difference in surface roughness(Sa) between the test groups, but the interlayer boundary was observed. There was no statistically significant difference in total colony forming units of Candida albicans between the test groups. Conclusion: There was no difference in the average surface roughness and adhesion of Candida albicans between the specimens. It is considered that the setting of the build angle should be set considering the accuracy or strength rather than the roughness of the surface.

  • PDF