• Title/Summary/Keyword: 3D geometry

Search Result 1,137, Processing Time 0.025 seconds

Isogeometric Analysis of Mindlin Plate Structures Using Commercial CAD Codes (상용 CAD와 연계한 후판 구조의 아이소-지오메트릭 해석)

  • Lee, Seung-Wook;Koo, Bon-Yong;Yoon, Min-Ho;Lee, Jae-Ok;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.329-335
    • /
    • 2011
  • The finite element method (FEM) has been used for various fields like mathematics and engineering. However, the FEM has a difficulty in describing the geometric shape exactly due to its property of piecewise linear discretization. Recently, however, a so-called isogeometric analysis method that uses the non-uniform rational B-spline(NURBS) basis function has been developed. The NURBS can be used to describe the geometry exactly and play a role of basis functions for the response analysis. Nevertheless, constructing the NURBS basis functions in analysis is as costly as a meshing process in the FEM. Since the isogeometric method shares geometric data with CAD, it is possible to intactly import the model data from commercial CAD tools. In this paper, we use the Rhinoceros 3D software to create CAD models and export in the form of STEP file. The information of knot vectors and control points in the NURBS is utilized in the isogeometric analysis. Through some numerical examples, the accuracy of isogeometric method is compared with that of FEM. Also, the efficiency of the isogeometric method that includes the CAD and CAE in a unified framework is verified.

A Study on the Variation of Transmission Factors, Output Factors and Percent Depth Doses by Wedge Filters for 4~10 MV X-Ray Beams (4~10 MV X-선의 쐐기 (wedge) 필터의 투과율과 출력계수, 선축상 선량분포의 변화에 관한 연구)

  • 강위생
    • Progress in Medical Physics
    • /
    • v.8 no.2
    • /
    • pp.3-17
    • /
    • 1997
  • Because a wedged beam consists of attenuated primary photons and scattered radiations from wedge, the spectrum of the wedged beam does not coincide with that of an open beam with same geometry. The aims of current report are to get exact information about whether effects of 15-60$^{\circ}$ wedge for 4 -10 MV photon beams should be considered for dose calculation or not, and to suggest a reference condition for measurement of wedge transmission factor. Percent depth dose of both open and wedged fields with angles of 15, 30, 45, 60$^{\circ}$ for beams of 4 MV(Clinac 4/100, Varian), two 6 MV(Clinac 6/100 and Clinac 2100C, Varian), 10 MV(Clinac 2100C, Varian) X-rays were measured to 30cm deep in water using ionization chambers. Hardening factors of photon beams were calculated with measured PDDs. Both field size factors and transmission factors of wedge filters were measured at d$_{max}$ in water. Beam hardening factors of wedged fields of 4 and 6 MV X-ray were larger than 1 for all wedge angles, field sizes and depths deeper than d$_{max}$ Beam hardening factors for wedge angles 15, 30, 45, 60$^{\circ}$ for 10$\times$10cm were respectively 1.010, 1.014, 1.023 and 1.034 for 4MV X-ray, 1.005, 1.008, 1.019, and 1.024 for 6MV X-ray of Clinac 6/100, 1.011, 1.021, 1.032, 1.036 for 6MV X-ray of Clinac 2100C, and 1.008, 1.012, 1.012 and 1.012 for 10MV X-ray. Beam hardening factors of 10MV X-ray were 1 within 1.2% difference for all wedge angles, depths and field sizes. It was made clear that for 6MV X-rays, the beam hardening factor depends on treatment machine. The relationship of the factor and depth was linear. Field size factor at d$_{max}$ was independent of wedge angle except for the field of 15$\times$15cm. and maximum difference of the field size factors for the field size was 1.4% for 4MV X-ray. When the wedge factor is determined, dependence of the factor on field size is negligible at d$_{max}$ but should be considered at deeper depth. Calculating dose distribution or MU, the beam hardening factor should be applied for 4~6MV X-ray beams, but might not be considered for 10MV beam. When wedge transmission factor was determined at d$_{max}$ or in air, field size factors for open field are also applicable to wedged fields, but otherwise, field size factor for each wedge or wedge factor depending on field size should be applied.

  • PDF

FinFET Gate Resistance Modeling and Optimization (FinFET 게이트 저항 압축 모델 개발 및 최적화)

  • Lee, SoonCheol;Kwon, Kee-Won;Kim, SoYoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.8
    • /
    • pp.30-37
    • /
    • 2014
  • In this paper, the compact model for FinFET gate resistance is developed. Based on the FinFET geometry and material, the value of the gate resistance is extracted by Y-parameter analysis using 3D device simulator, Sentaurus. By dividing the gate resistance into horizontal and vertical components, the proposed gate resistance model captures the non-linear characteristics. The proposed compact model reflects the realistic gate structure which has two different materials (Tungsten, TiN) stacked. Using the proposed model, the number of fins for the minimum gate resistance can be proposed based on the variation of gate geometrical parameters. The proposed gate resistance model is implemented in BSIM-CMG. A ring-oscillator is designed, and its delay performance is compared with and without gate resistance.

ACCELERATION OF COSMIC RAYS AT COSMIC SHOCKS

  • KANG HYESUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.1-12
    • /
    • 2003
  • Nonthermal particles can be produced due to incomplete thermalization at collisionless shocks and further accelerated to very high energies via diffusive shock acceleration. In a previous study we explored the cosmic ray (CR) acceleration at cosmic shocks through numerical simulations of CR modified, quasi-parallel shocks in 1D plane-parallel geometry with the physical parameters relevant for the shocks emerging in the large scale structure formation of the universe (Kang & Jones 2002). Specifically we considered pancake shocks driven by accretion flows with $U_o = 1500 km\;s^{-l}$ and the preshock gas temperature of $T_o = 10^4 - 10^8K$. In order to consider the CR acceleration at shocks with a broader range of physical properties, in this contribution we present additional simulations with accretion flows with $U_o = 75 - 1500 km\;s^{-l}$ and $T_o = 10^4K$. We also compare the new simulation results with those reported in the previous study. For a given Mach number, shocks with higher speeds accelerate CRs faster with a greater number of particles, since the acceleration time scale is $t_{acc}\;{\propto}\;U_o^{-2}$. However, two shocks with a same Mach number but with different shock speeds evolve qualitatively similarly when the results are presented in terms of diffusion length and time scales. Therefore, the time asymptotic value for the fraction of shock kinetic energy transferred to CRs is mainly controlled by shock Mach number rather than shock speed. Although the CR acceleration efficiency depends weakly on a well-constrained injection parameter, $\epsilon$, and on shock speed for low shock Mach numbers, the dependence disappears for high shock Mach numbers. We present the 'CR energy ratio', ${\phi}(M_s)$, for a wide range of shock parameters and for $\epsilon$ = 0.2 - 0.3 at terminal time of our simulations. We suggest that these values can be considered as time-asymptotic values for the CR acceleration efficiency, since the time-dependent evolution of CR modified shocks has become approximately self-similar before the terminal time.

A Study on Relation of Needle-Nozzle Flow of Piezo-driven Injector by using Eulerian-Lagrangian Multi-phase Method (Eulerian-Lagrangian 다상 유동해석법에 의한 피에조인젝터의 니들-노즐유동 상관성 연구)

  • Lee, Jin-Wook;Min, Kyoung-Doug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.108-114
    • /
    • 2010
  • The injection nozzle of an electro-hydraulic injector is being opened and closed by movement of a injector's needle which is balanced by pressure at the nozzle seat and at the needle control chamber, at the opposite end of the needle. In this study, the effects of needle movement in a piezo-driven injector on unsteady cavitating flows behavior inside nozzle were investigated by cavitation numerical model based on the Eulerian-Lagrangian approach. Aimed at simulating the 3-D two-phase flow behavior, the three dimensional geometry model along the central cross-section regarding of one injection hole with real design data of a piezo-driven diesel injector has been used to simulate the cavitating flows for injection time by at fully transient simulation with cavitation model. The cavitation model incorporates many of the fundamental physical processes assumed to take place in cavitating flows. The simulations performed were both fully transient and 'pseudo' steady state, even if under steady state boundary conditions. As this research results, we found that it could analyze the effect the pressure drop to the sudden acceleration of fuel, which is due to the fastest response of needle, on the degree of cavitation existed in piezo-driven injector nozzle.

Optimum Configuration of Gutters for Glasshouses Using ANSYS and ADAMS (ANSYS/ADAMS를 이용한 유리온실 최적의 Gutter 형태 설계)

  • Kim, Jin-Soo;Ouk, Sokunthearith;Lim, Su-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • A gutter is generally a fixed beneath the edge of a roof to carry off rainwater, or a narrow trough that collects rainwater from the roof of a building to diverts it from the structure, typically into a drain. Reasonable designs reduce the mass of the gutters (~ 16.9%), make it faster and easier to assemble, and gives it consistent strength and integrity (about 10%). New gutter systems are presented according to the results of structural analyses performed by ANSYS and ADAMS/Durability Hot Spots. In addition, the CATIA program can improve the precision of the 3D system simulations. The design of a gutter system installations also needs to comply with the specific rainfall intensities and adequate overflow provisions needs to be provided to prevent water from sides of the roofs during heavy rainfall periods. The principle outcome of this work is a computational design tool that can be used to improve the gutter performance considering a variety of factors (gutter geometry, drainage and rainfall intensity). A good gutter design must satisfy many criteria, including durability, low cost, and ease of repair and cleaning.

Thermohydrodynamic Analysis and Pad Temperature Measurement of Tilting Pad Journal Bearing with Worn Pad (표면이 마모된 틸팅 패드 저널베어링의 열윤활 해석 및 온도 측정)

  • Lee, Donghyun;Sun, Kyungho;Kim, Byungock;Kang, Donghyuk
    • Tribology and Lubricants
    • /
    • v.33 no.4
    • /
    • pp.134-140
    • /
    • 2017
  • With the increase in adoption of tilting pad journal bearings (TPJBs), various failure mechanisms related to TPJBs have been reported, of which pad wear is a frequently reported one. Pad wear causes change in geometry of the bearing, which can sometimes result in the failure of the entire system. The objective of this research is to investigate the influence of pad wear on the pad temperature, which is one of the widely used condition monitoring methods for TPJBs. For the theoretical investigation, thermohydrodynamic (THD) analysis was conducted by solving the generalized Reynolds equation and the 3D energy equation. The results of the analysis show that the temperature of the loaded pad increases while that of the unloaded pad decreases, when there is wear on the loaded pads. In addition, the minimum film thickness decreases with an increase in the wear depth. A validation test was conducted with a test rig, which mimics the axial turbine when a test rotor is supported by two TPJBs. The test bearing consists of five pads with a diameter of 60 mm, and a resistance temperature detector (RTD) is installed in the pad for temperature monitoring. The test was performed by replacing the two loaded pads with the worn pad. The test result for the TPJB with wear depth of $30{\mu}m$ show that the temperatures of the loaded pads are $8^{\circ}C$ higher and that of the unloaded pad is $2.5^{\circ}C$ lower than that of the normal TPJB. In addition, the predicted pad temperature shows good agreement with the measured pad temperatures.

Animated Mesh Compression with Semi-regular Remeshing (준균일 메쉬 재구성를 이용한 메쉬 시퀀스 압축 기법)

  • Ahn, Min-Su
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.5
    • /
    • pp.76-83
    • /
    • 2009
  • This paper presents a compression method for animated meshes or mesh sequences which have a shared connectivity and geometry streams. Our approach is based on static semi-regular mesh compression algorithm introduced by Khodakovky et al. Our encoding algorithm consists of two stages. First, the proposed technique creates a semi-regular mesh sequence from an input irregular mesh sequence. For semi-regular remeshing of irregular mesh sequences, this paper adapts the MAPS algorithm. However, MAPS cannot directly be performed to the input irregular mesh sequence. Thus, the proposed remesh algorithm revises the MAPS remesher using the clustering information, which classify coherent parts during the animation. The second stage uses wavelet transformation and clustering information to compress geometries of mesh sequences efficiently. The proposed compression algorithm predicts the vertex trajectories using the clustering information and the cluster transformation during the animation and compress the difference other frames from the reference frame in order to reduce the range of 3D position values.

A Study on the Photorealism of Digital Architectural Rendering Images (디지털 건축 렌더링 이미지의 포토리얼리즘에 대한 고찰)

  • Kim, Jong Konk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.238-246
    • /
    • 2018
  • The production of hyper-realistic digital rendering images has been available due to radical improvements of recent digital rendering and CGI (Computer-Generated Imagery) software technologies. The photorealism of digital architectural rendering images requires further studies and discussions in that architectural visualization becomes a foundation of other fields using digital rendering technology, such as movies, games, and VR industry. The principles for achieving photorealism on digital architectural rendering images were re-defined and detailed elements were analyzed through theoretical analysis of the former studies. Four principles were drawn from the architectural rendering images produced by newly-developed technologies: physically-accurate lighting calculations, accurate object geometry representation, realistic material and texture, and characteristics of photography. The sub-elements of those four principles are categorized into either essential or selective for photorealistic imagery and the randomness of the selective elements could explain the variety of photorealistic architectural rendering styles.

SOME RESULTS ON ASYMPTOTIC BEHAVIORS OF RANDOM SUMS OF INDEPENDENT IDENTICALLY DISTRIBUTED RANDOM VARIABLES

  • Hung, Tran Loc;Thanh, Tran Thien
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.1
    • /
    • pp.119-128
    • /
    • 2010
  • Let ${X_n,\;n\geq1}$ be a sequence of independent identically distributed (i.i.d.) random variables (r.vs.), defined on a probability space ($\Omega$,A,P), and let ${N_n,\;n\geq1}$ be a sequence of positive integer-valued r.vs., defined on the same probability space ($\Omega$,A,P). Furthermore, we assume that the r.vs. $N_n$, $n\geq1$ are independent of all r.vs. $X_n$, $n\geq1$. In present paper we are interested in asymptotic behaviors of the random sum $S_{N_n}=X_1+X_2+\cdots+X_{N_n}$, $S_0=0$, where the r.vs. $N_n$, $n\geq1$ obey some defined probability laws. Since the appearance of the Robbins's results in 1948 ([8]), the random sums $S_{N_n}$ have been investigated in the theory probability and stochastic processes for quite some time (see [1], [4], [2], [3], [5]). Recently, the random sum approach is used in some applied problems of stochastic processes, stochastic modeling, random walk, queue theory, theory of network or theory of estimation (see [10], [12]). The main aim of this paper is to establish some results related to the asymptotic behaviors of the random sum $S_{N_n}$, in cases when the $N_n$, $n\geq1$ are assumed to follow concrete probability laws as Poisson, Bernoulli, binomial or geometry.