• Title/Summary/Keyword: 3D building modeling

Search Result 494, Processing Time 0.024 seconds

Study on Damage Information Management Plan for Maintenance and Operation of River Facilities (하천시설 유지운영을 위한 손상정보 관리방안 연구)

  • Joo, Jae-Ha;Nam, Jeung-Yong;Kim, Tae-Hyung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.1
    • /
    • pp.9-18
    • /
    • 2021
  • Recently, the rapid proliferation, introduction, and application of the fourth industrial revolution technology has emerged as a trend in the construction market. Building Information Model (BIM) technology is a multidimensional information system that forms the basis of the fourth industrial revolution technology. The river sector utilizing this information-based system is also being actively reviewed, for example, the current measures for maintenance. In recent years, active research and current work should be done to reflect the need for river experts to introduce BIM into the river field. In addition, the development of tools and support software for establishing various information systems is essential for the activation of facility maintenance information systems reflecting advanced technology and to establish and operate management plans. A study on the maintenance of river facilities involves using existing drawings to build a three-dimensional (3D) information model, check the damage utilizing it, and inform it, and utilize it as the data for maintenance reinforcement. This study involved determining a method to build a river facility without the existing information system and using the property maintenance information with 3D modeling to provide a more effective and highly utilized management plan to check maintenance operations and manage damages.

A Study on the Implement of AI-based Integrated Smart Fire Safety (ISFS) System in Public Facility

  • Myung Sik Lee;Pill Sun Seo
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.3
    • /
    • pp.225-234
    • /
    • 2023
  • Even at this point in the era of digital transformation, we are still facing many problems in the safety sector that cannot prevent the occurrence or spread of human casualties. When you are in an unexpected emergency, it is often difficult to respond only with human physical ability. Human casualties continue to occur at construction sites, manufacturing plants, and multi-use facilities used by many people in everyday life. If you encounter a situation where normal judgment is impossible in the event of an emergency at a life site where there are still many safety blind spots, it is difficult to cope with the existing manual guidance method. New variable guidance technology, which combines artificial intelligence and digital twin, can make it possible to prevent casualties by processing large amounts of data needed to derive appropriate countermeasures in real time beyond identifying what safety accidents occurred in unexpected crisis situations. When a simple control method that divides and monitors several CCTVs is digitally converted and combined with artificial intelligence and 3D digital twin control technology, intelligence augmentation (IA) effect can be achieved that strengthens the safety decision-making ability required in real time. With the enforcement of the Serious Disaster Enterprise Punishment Act, the importance of distributing a smart location guidance system that urgently solves the decision-making delay that occurs in safety accidents at various industrial sites and strengthens the real-time decision-making ability of field workers and managers is highlighted. The smart location guidance system that combines artificial intelligence and digital twin consists of AIoT HW equipment, wireless communication NW equipment, and intelligent SW platform. The intelligent SW platform consists of Builder that supports digital twin modeling, Watch that meets real-time control based on synchronization between real objects and digital twin models, and Simulator that supports the development and verification of various safety management scenarios using intelligent agents. The smart location guidance system provides on-site monitoring using IoT equipment, CCTV-linked intelligent image analysis, intelligent operating procedures that support workflow modeling to immediately reflect the needs of the site, situational location guidance, and digital twin virtual fencing access control technology. This paper examines the limitations of traditional fixed passive guidance methods, analyzes global technology development trends to overcome them, identifies the digital transformation properties required to switch to intelligent variable smart location guidance methods, explains the characteristics and components of AI-based public facility smart fire safety integrated system (ISFS).

Development of Plant BIM Library according to Object Geometry and Attribute Information Guidelines (객체 형상 및 속성정보 지침에 따른 수목 BIM 라이브러리 개발)

  • Kim, Bok-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.2
    • /
    • pp.51-63
    • /
    • 2024
  • While the government policy to fully adopt BIM in the construction sector is being implemented, the construction and utilization of landscape BIM models are facing challenges due to problems such as limitations in BIM authoring tools, difficulties in modeling natural materials, and a shortage in BIM content including libraries. In particular, plants, fundamental design elements in the field of landscape architecture, must be included in BIM models, yet they are often omitted during the modeling process, or necessary information is not included, which further compromises the quality of the BIM data. This study aimed to contribute to the construction and utilization of landscape BIM models by developing a plant library that complies with BIM standards and is applicable to the landscape industry. The plant library of trees and shrubs was developed in Revit by modeling 3D shapes and collecting attribute items. The geometric information is simplified to express the unique characteristics of each plant species at LOD200, LOD300, and LOD350 levels. The attribute information includes properties on plant species identification, such as species name, specifications, and quantity estimation, as well as ecological attributes and environmental performance information, totaling 24 items. The names of the files were given so that the hierarchy of an object in the landscape field could be revealed and the object name could classify the plant itself. Its usability was examined by building a landscape BIM model of an apartment complex. The result showed that the plant library facilitated the construction process of the landscape BIM model. It was also confirmed that the library was properly operated in the basic utilization of the BIM model, such as 2D documentation, quantity takeoff, and design review. However, the library lacked ground cover, and had limitations in those variables such as the environmental performance of plants because various databases for some materials have not yet been established. Further efforts are needed to develop BIM modeling tools, techniques, and various databases for natural materials. Moreover, entities and systems responsible for creating, managing, distributing, and disseminating BIM libraries must be established.

Methods for Quantitative Disassembly and Code Establishment of CBS in BIM for Program and Payment Management (BIM의 공정과 기성 관리 적용을 위한 CBS 수량 분개 및 코드 정립 방안)

  • Hando Kim;Jeongyong Nam;Yongju Kim;Inhye Ryu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.6
    • /
    • pp.381-389
    • /
    • 2023
  • One of the crucial components in building information modeling (BIM) is data. To systematically manage these data, various research studies have focused on the creation of object breakdown structures and property sets. Specifically, crucial data for managing programs and payments involves work breakdown structures (WBSs) and cost breakdown structures (CBSs), which are indispensable for mapping BIM objects. Achieving this requires disassembling CBS quantities based on 3D objects and WBS. However, this task is highly tedious owing to the large volume of CBS and divergent coding practices employed by different organizations. Manual processes, such as those based on Excel, become nearly impossible for such extensive tasks. In response to the challenge of computing quantities that are difficult to derive from BIM objects, this study presents methods for disassembling length-based quantities, incorporating significant portions of the bill of quantities (BOQs). The proposed approach recommends suitable CBS by leveraging the accumulated history of WBS-CBS mapping databases. Additionally, it establishes a unified CBS code, facilitating the effective operation of CBS databases.

Case Study of Smart Phone GPS Sensor-based Earthwork Monitoring and Simulation (스마트폰 GPS 센서 기반의 토공 공정 모니터링 및 시뮬레이션 활용 사례연구)

  • Jo, Hyeon-Seok;Yun, Chung-Bae;Park, Ji-Hyeon;Han, Sang Uk
    • Journal of KIBIM
    • /
    • v.12 no.4
    • /
    • pp.61-69
    • /
    • 2022
  • Earthmoving operations account for approximately 25% of construction cost, generally executed prior to the construction of buildings and structures with heavy equipment. For the successful completion of earthwork projects, it is crucial to constantly monitor earthwork equipment (e.g., trucks), estimate productivity, and optimize the construction process and equipment on a construction site. Traditional methods however require time-consuming and painstaking tasks for the manual observations of the ongoing field operations. This study proposed the use of a GPS sensor embedded in a smartphone for the tracking and visualization of equipment locations, which are in turn used for the estimation and simulation of cycle times and production rates of ongoing earthwork. This approach is implemented into a digital platform enabling real-time data collection and simulation, particularly in a 2D (e.g., maps) or 3D (e.g., point clouds) virtual environment where the spatial and temporal flows of trucks are visualized. In the case study, the digital platform is applied for an earthmoving operation at the site development work of commercial factories. The results demonstrate that the production rates of various equipment usage scenarios (e.g., the different numbers of trucks) can be estimated through simulation, and then, the optimal number of tucks for the equipment fleet can be determined, thus supporting the practical potential of real-time sensing and simulation for onsite equipment management.

Development of a Prototype for an Earthwork BIM Environment (건설현장 굴착작업을 위한 토공 BIM 프로토타입 개발)

  • Moon, Sungwoo;Son, Jihong;Hong, Soonheon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.707-714
    • /
    • 2015
  • The national government is pushing hard the adoption of the BIM (Building Information Modeling) technology in the construction industry. The BIM application provides a visualized environment where the construction manager can inspect the structure of buidling structures. The application also provides information on activity progresses as well as earned values. However, BIM is mostly applied to visualize a structural object with definite forms. The BIM technology needs to be extended to include an object with non-definite forms such as earthwork operations. The objective of this study is to present a prototype of earthwork BIM in the construction operation. The prototype has been built on the attributes of geological information, construction equipment and positioning. The prototype of earthwork BIM shows a 3D graphic simulation of construction equipment moving around for digging and loading.

Integrated Geospatial Information Construction of Ocean and Terrain Using Multibeam Echo Sounder Data and Airborne Lidar Data (항공 Lidar와 멀티빔 음향측심 자료를 이용한 해상과 육상의 통합 지형공간정보 구축)

  • Lee, Jae-One;Choi, Hye-Won;Yun, Bu-Yeol;Park, Chi-Young
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.28-39
    • /
    • 2014
  • Several studies have been performed globally on the construction of integrated systems that are available for the integrated use of 3D geographic information on terrain and oceans. Research on 3D geographic modeling is also facilitated by the application of Lidar surveying, which enables the highly accurate realization of 3D geographic information for a wide area of land. In addition, a few marine research organizations have been conducting investigations and surveying diverse ocean information for building and applying MGIS(Marine Geographic Information System). However, the construction of integrated geographic information systems for both terrain and oceans has certain limitations resulting from the inconsistency in reference systems and datum levels between two data. Therefore, in this investigation, integrated geospatial information has been realized by using a combined topographical map, after matching the reference systems and datum levels by integration of airborne Lidar data and multi-beam echo sounder data. To verify the accuracy of the integrated geospatial information data, ten randomly selected samples from study areas were selected and analyzed. The results show that the 10 analyzed data samples have an RMSE of 0.46m, which meets the IHO standard(0.5m) for depth accuracy of hydrographic surveys.

Evaluating a Positioning Accuracy of Roadside Facilities DB Constructed from Mobile Mapping System Point Cloud (Mobile Mapping System Point Cloud를 활용한 도로주변 시설물 DB 구축 및 위치 정확도 평가)

  • KIM, Jae-Hak;LEE, Hong-Sool;ROH, Su-Lae;LEE, Dong-Ha
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.99-106
    • /
    • 2019
  • Technology that cannot be excluded from 4th industry is self-driving sector. The self-driving sector can be seen as a key set of technologies in the fourth industry, especially in the DB sector is getting more and more popular as a business. The DB, which was previously produced and managed in two dimensions, is now evolving into three dimensions. Among the data obtained by Mobile Mapping System () to produce the HD MAP necessary for self-driving, Point Cloud, which is LiDAR data, is used as a DB because it contains accurate location information. However, at present, it is not widely used as a base data for 3D modeling in addition to HD MAP production. In this study, MMS Point Cloud was used to extract facilities around the road and to overlay the location to expand the usability of Point Cloud. Building utility poles and communication poles DB from Point Cloud and comparing road name address base and location, it is believed that the accuracy of the location of the facility DB extracted from Point Cloud is also higher than the basic road name address of the road, It is necessary to study the expansion of the facility field sufficiently.

Comparison and Evaluation on DEM Error by the Resolution of Airborne Laser Scanning Data (항공레이저 측량 자료의 해상도에 따른 DEM 오차 비교평가 연구)

  • Lee, Geun-Sang;Koh, Deuk-Koo;Chae, Hyo-Seok;Shin, Young-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.3
    • /
    • pp.33-42
    • /
    • 2003
  • As airborne laser scanning technique is developed with high vertical accuracy recently, there come many studies on DEM(digital elevation model creation, building extraction, flood risk mapping and 3D virtual city modeling. This study applied point comparative method, contour comparative method and digital map with scale 1/5,000 to calculate RMSE of DEM in according to resolution that was constructed using rawdata being acquired by airborne laser scanning. As a result, point comparative method showed lower DEM standard error than contour comparative method, it is a reason that contour comparative method was not carried out detailed grid calculation for point comparative method. Also, digital map with scale 1/5,000 showed higher DEM standard error than point comparative method and contour comparative method in below 25.4m that is average horizontal distance among contour line, and showed similar result with contour comparative method in over 25.4m.

  • PDF

A Study on Crowd Evacuation Simulation Validation Method using The Safeguard Validation Data Set (SGVDS) 1 and 2 (The Safeguard Validation Data Set (SGVDS) 1과 2를 활용한 군중 대피 시뮬레이션 검증 방안에 관한 연구)

  • Seunghyun Lee;Jae Min Lee;Hyuncheol Kim
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.3
    • /
    • pp.50-59
    • /
    • 2024
  • In recent years, building architecture has become increasingly complex and larger in scale to accommodate many people. In densely populated facilities, the interiors are becoming more intricate and high-rise, with narrow corridors, hallways, and stairs. This poses challenges for evacuating occupants in case of emergencies such as fires, making it crucial to assess the evacuation safety in advance. In evacuation safety research, there are significant limitations to theoretical studies owing to their association with crowd behavior and human evacuation characteristics, as well as the risks associated with experiments involving human participants. Consequently, evacuation experiments conducted using simulation-based methodologies are gaining recognition worldwide. However, crowd simulations face validation difficulties because of variations in crowd movement and evacuation characteristics across different cases and scenarios, as well as the challenge of accurately reflecting human characteristics during evacuations. In this study, we investigated validation methods for evacuation simulations using the SAFEGUARD validation data set (SGVDS) provided by the University of Greenwich, UK. The SGVDS collects data on crowd evacuations through actual evacuation tests conducted on ColorLine's large RO-PAX ferry and Royal Caribbean International's cruise ships. The accuracy of the crowd simulations can be validated by comparing SGVDS and crowd simulation results. This study will contribute to the development of highly accurate crowd simulations by verifying various crowd simulations.