• Title/Summary/Keyword: 3D acquisition

Search Result 621, Processing Time 0.029 seconds

Development of an Image Processing Algorithm for Paprika Recognition and Coordinate Information Acquisition using Stereo Vision (스테레오 영상을 이용한 파프리카 인식 및 좌표 정보 획득 영상처리 알고리즘 개발)

  • Hwa, Ji-Ho;Song, Eui-Han;Lee, Min-Young;Lee, Bong-Ki;Lee, Dae-Weon
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.210-216
    • /
    • 2015
  • Purpose of this study was a development of an image processing algorithm to recognize paprika and acquire it's 3D coordinates from stereo images to precisely control an end-effector of a paprika auto harvester. First, H and S threshold was set using HSI histogram analyze for extracting ROI(region of interest) from raw paprika cultivation images. Next, fundamental matrix of a stereo camera system was calculated to process matching between extracted ROI of corresponding images. Epipolar lines were acquired using F matrix, and $11{\times}11$ mask was used to compare pixels on the line. Distance between extracted corresponding points were calibrated using 3D coordinates of a calibration board. Non linear regression analyze was used to prove relation between each pixel disparity of corresponding points and depth(Z). Finally, the program could calculate horizontal(X), vertical(Y) directional coordinates using stereo camera's geometry. Horizontal directional coordinate's average error was 5.3mm, vertical was 18.8mm, depth was 5.4mm. Most of the error was occurred at 400~450mm of depth and distorted regions of image.

Measurement of Respiratory Motion Signals for Respiratory Gating Radiation Therapy (호흡동조 방사선치료를 위한 호흡 움직임 신호 측정)

  • Chung, Jin-Beom;Chung, Won-Kyun;Kim, Yon-Lae;Lee, Jeong-Woo;Suh, Tae-Suk
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2005.04a
    • /
    • pp.59-63
    • /
    • 2005
  • Respiration motion causes movement of internal structures in the thorax and abdomen, making accurate delivery of radiation therapy to tumors in those areas a challenge. Accounting for such motion during treatment, therefore, has the potential to reduce margins drawn around the clinical target volume (CTV), resulting in a lower dose to normal tissues (e.g., lung and liver) and thus a lower risk of treatment induced complications. Among the techniques that explicitly account for intrafraction motion are breath-hold, respiration gating, and 4D or tumor-tracking techniques. Respiration gating methods periodically turn the beam on when the patient's respiration signal is in a certain part of the respiratory cycle (generally end-inhale or end-exhale). These techniques require acquisition of some form of respiration motion signal (infrared reflective markers, spirometry, strain gauge, thermistor, video tracking of chest outlines and fluoroscopic tracking of implanted markers are some of the techniques employed to date), which is assumed to be correlated with internal anatomy motion. In preliminary study for the respiratory gating radiation therapy, we performed to measurement of this respiration motion signal. In order to measure the respiratory motion signals of patient, respiration measurement system (RMS) was composed with three sensor (spirometer, thermistor, and belt transducer), 4 channel data acquisition system and mobile computer. For two patients, we performed to evaluation of respiratory cycle and shape with RMS. We observed under this system that respiratory cycle is generally periodic but asymmetric, with the majority of time spent. As expected, RMS traced patient's respiration each other well and be easily handled for application.

  • PDF

An Analysis of Application Performance of Defense R&D Technologies Acquired by Offset Programs (절충교역을 통해 획득한 연구개발 기술의 활용성과 분석)

  • Hong, Seoksoo;Seo, Jaehyun;Shim, Sang-Ryul
    • Journal of Technology Innovation
    • /
    • v.22 no.2
    • /
    • pp.1-30
    • /
    • 2014
  • Offset trade has been applied in Republic of Korea's defense acquisition programs since early 1980s and used for national economic development as well as enhancement of military capabilities. The accumulated offset trade value amounts to over 10 billion dollars by 2010. However, questions in regards to the effectiveness of offset trade have been constantly raised. As it is a quite difficult task to analyze and calculate the application performance of defense technologies acquired by offsets objectively, limited level of quantitative analysis of application performance have been conducted so far. Hence, in this paper, we came to understand the overall status of application of those technologies through in-depth performance analysis and suggested some specific policies for the further development of offset trade based on the analysis results. To begin with, we developed a questionnaire based on performance indicator deducted through literature review of relevant researches, and conducted survey of major offset recipients. Also, another survey of offset experts belonged to the army, government organization, research institute and companies was conducted to evaluate the performance and effectiveness of offsets qualitatively. And we analyzed the efficiency of application performance using DEA. The results of all surveys are showing that there is positive accomplishment in the technological aspect, but in economic aspect, it shows relatively inactive outcome. Based on these results, policy direction is considered to be changed from the emphasis on the acquisition of core technology to revitalization of domestic defense industry in line with new government's policy orientation.

Application of Terrestrial LiDAR for Displacement Detecting on Risk Slope (위험 경사면의 변위 검출을 위한 지상 라이다의 활용)

  • Lee, Keun-Wang;Park, Joon-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.323-328
    • /
    • 2019
  • In order to construct 3D geospatial information about the terrain, current measurement using a total station, remote sensing, GNSS(Global Navigation Satellite System) have been used. However, ground survey and GNSS survey have time and economic disadvantages because they have to be surveyed directly in the field. In case of using aerial photographs and satellite images, these methods have the disadvantage that it is difficult to obtain the three-dimensional shape of the terrain. The terrestrial LiDAR can acquire 3D information of X, Y, Z coordinate and shape obtained by scanning innumerable laser pulses at densely spaced intervals on the surface of the object to be observed at high density, and the processing can also be automated. In this study, terrestrial LiDAR was used to analyze slope displacement. Study area slopes were selected and data were acquired using LiDAR in 2016 and 2017. Data processing has been used to generate slope cross section and slope data, and the overlay analysis of the generated data identifies slope displacements within 0.1 m and suggests the possibility of using slope LiDAR on land to manage slopes. If periodic data acquisition and analysis is performed in the future, the method using the terrestrial lidar will contribute to effective risk slope management.

A ScanSAR Processing without Azimuth Stitching by Time-domain Cross-correlation (Azimuth Stitching 없는 ScanSAR 영상화: 시간영역 교차상관)

  • Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.3
    • /
    • pp.251-263
    • /
    • 2022
  • This paper presents an idea of ScanSAR image formation. For image formation of ScanSAR that utilizes the burst mode for raw signal acquisition, most conventional single burst methods essentially require a step of azimuth stitching which contributes to radiometric and phase distortions to some extent. Time-domain cross correlation could replace SPECAN which is most popularly used for ScanSAR processing. The core idea of the proposed method is that it is possible to relieve the necessity of azimuth stitching by an extension of Doppler bandwidth of the reference function to the burst cycle period. Performance of the proposed method was evaluated by applying it to the raw signals acquired by a spaceborne SAR system, and results satisfied all image quality requirements including 3 dB width, peak-to-sidelobe ratio (PSLR), compression ratio,speckle noise, etc. Image quality of ScanSAR is inferior to that of Stripmap in all aspects. However, it is also possible to improve the quality of ScanSAR image competitive to that of Stripmap if focused on a certain parameter while reduced qualities of other parameters. Thus, it is necessary for a ScanSAR processor to offer a great degree of flexibility complying with different requirements for different applications and techniques.

Secure User Authority Authentication Method in the Open Authorization (Open Authorization에서의 안전한 사용자 권한 인증 방법에 관한 연구)

  • Chae, Cheol-Joo;Lee, June-Hwan;Cho, Han-Jin
    • Journal of Digital Convergence
    • /
    • v.12 no.8
    • /
    • pp.289-294
    • /
    • 2014
  • Recently, the various web service and applications are provided to the user. As to these service, because of providing the service to the authenticated user, the user undergoes the inconvenience of performing the authentication with the service especially every time. The OAuth(Open Authorization) protocol which acquires the access privilege in which 3rd Party application is limited on the web service in order to resolve this inconvenience appeared. This OAuth protocol provides the service which is convenient and flexible to the user but has the security vulnerability about the authorization acquisition. Therefore, we propose the method that analyze the security vulnerability which it can be generated in the OAuth 2.0 protocol and secure user authority authentication method.

A Study on Digitization and Figuration Analysis of the Underground Mine Cavity Using MIRECO EYE System (MIRECO EYE 시스템을 활용한 광산 지하공동의 수치화 및 형상화 분석 연구)

  • Kim, Soo Lo;Park, Jay Hyun;Yang, In Jae
    • Tunnel and Underground Space
    • /
    • v.28 no.5
    • /
    • pp.387-399
    • /
    • 2018
  • Mine reclamation project is closely related to human's past mining activities and the current human's living environment. It is a reason for the national management. In order to efficiently carry out mine reclamation projects, a precise investigation and analysis of the underground space of the abandoned mine is required. Korea MINE RECLAMATION Corp. is developing a practical technology that is effective in investigating and actually measuring underground cavities. MIRECO EYE system is an exploration equipment for 3D digitization and figuration of underground cavities. As combining a laser, sonar and image acquisition technology, it enables access to information about inaccessible underground cavities and effective management of subsidence risk of mined area. and currently it is also utilized for various purposes in related areas such as investigating urban sinkholes. This article is precise numerical and geometric information analysis obtained through MIRECO EYE system.

Fast Monopulse Method Using Noise-Jamming Subspace (재밍 환경에서 잡음 부공간을 이용한 고속 모노펄스 방법)

  • Lim, Jong-Hwan;Kim, Jae-Hak;Yang, Hoon-Gee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.3
    • /
    • pp.372-375
    • /
    • 2014
  • A monopulse based on maximum likelihood(ML) in jamming scenario can suppress jamming signal using an inverse matrix of a covariance matrix. In order to achieve adequate suppression of jamming signal, the sufficient number of snapshots is required. However, this is not possible in high PRF scenario, which hinders a real-time tracking. Moreover, even with the large number of snapshots, the estimation accuracy of the target direction is decreased in low JNR(Jammer to Noise Ratio) due to insufficient jammer suppression. In this paper, we propose a monopulse algorithm that doesn't degrade performance significantly with a small number of snapshots and in low JNR. We show its derivation that exploits noise-jammer subspace of a covariance matrix, along with its performance through simulation.

An Off-line Maximum Torque Control Strategy of Wound Rotor Synchronous Machine with Nonlinear Parameters

  • Wang, Qi;Lee, Heon-Hyeong;Park, Hong-Joo;Kim, Sung-Il;Lee, Geun-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.609-617
    • /
    • 2016
  • Belt-driven Starter Generator (BSG) differs from other mild hybrid systems as the crankshaft of vehicle are not run off. Motor permits a low-cost method of adding mild hybrid capabilities such as start-stop, power assist, and mild levels of regenerative braking. Wound rotor synchronous motor (WRSM) could be adopted in BSG system for HEV e-Assisted application instead of the interior permanent magnet synchronous motor (IPMSM). In practice, adequate torque is indispensable for starter assist system, and energy conversion should be taken into account for the HEV or EV as well. Particularly, flux weakening control is possible to realize by adjusting both direct axis components of current and field current in WRSM. Accordingly, this paper present an off-line current acquisition algorithm that can reasonably combine the stator and field current to acquire the maximum torque, meanwhile the energy conversion is taken into consideration by losses. Besides, on account of inductance influence by non-uniform air gap around rotor, nonlinear inductances and armature flux linkage against current variation are proposed to guarantee the results closer to reality. A computer-aided method for proposed algorithm are present and results are given in form of the Look-up table (LUT). The experiment shows the validity of algorithm.

Development of Software GPS Receiver for GEO Satellites Using Weak Signal Receiver Algorithm (미약신호 수신 알고리즘을 활용한 정지궤도위성 탑재용 소프트웨어 GPS 수신기 개발)

  • Kim, Chong-Won;Kim, Ghang-Ho;Kee, Chang-Don
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.312-318
    • /
    • 2014
  • The altitudes of GEO satellites are higher than those of GPS satellites. Therefore the visibility and the received power of GPS signals are totally different from those of the users near the Earth's surface. In this study, we analyzed the visibility of GPS signals received on GEO satellites. And we also developed a software GPS receiver that works on GEO satellites using CCMDB algorithm which is a weak signal receiver algorithm. GPS signals received on a GEO satellite are generated by a commercial hardware GPS simulator and used for the verification of the developed software GPS receiver. The mean 3D position and velocity error are calculated as 165.636 m and 0.5081 m/s.