Browse > Article
http://dx.doi.org/10.7780/kjrs.2022.38.3.3

A ScanSAR Processing without Azimuth Stitching by Time-domain Cross-correlation  

Won, Joong-Sun (Department of Earth System Science, Yonsei University)
Publication Information
Korean Journal of Remote Sensing / v.38, no.3, 2022 , pp. 251-263 More about this Journal
Abstract
This paper presents an idea of ScanSAR image formation. For image formation of ScanSAR that utilizes the burst mode for raw signal acquisition, most conventional single burst methods essentially require a step of azimuth stitching which contributes to radiometric and phase distortions to some extent. Time-domain cross correlation could replace SPECAN which is most popularly used for ScanSAR processing. The core idea of the proposed method is that it is possible to relieve the necessity of azimuth stitching by an extension of Doppler bandwidth of the reference function to the burst cycle period. Performance of the proposed method was evaluated by applying it to the raw signals acquired by a spaceborne SAR system, and results satisfied all image quality requirements including 3 dB width, peak-to-sidelobe ratio (PSLR), compression ratio,speckle noise, etc. Image quality of ScanSAR is inferior to that of Stripmap in all aspects. However, it is also possible to improve the quality of ScanSAR image competitive to that of Stripmap if focused on a certain parameter while reduced qualities of other parameters. Thus, it is necessary for a ScanSAR processor to offer a great degree of flexibility complying with different requirements for different applications and techniques.
Keywords
ScanSAR; Image formation; Time domain cross-correlation; Azimuth stitching;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lanari, R., S. Hensley, and P. Rosen, 1998a. Modified SPECAN algorithm for ScanSAR data processing, Proc. of 1998 International Geoscience and Remote Sensing Symposium, Seattle, WA, Jul. 6-10, vol. 2, pp. 636-638. https://doi.org/10.1109/Igarss.1998.699535   DOI
2 Lanari, R., S. Hensley, and P.A. Rosen, 1998b. Chirp z-transform based SPECAN approach for phasepreserving ScanSAR image generation, IEE Proceedings-Radar Sonar and Navigation, 145(5): 254-261. https://doi.org/10.1049/ip-rsn:19982218   DOI
3 Liang, C. R., Q. M. Zeng, and J. Jiao, 2014. An assessment of ScanSAR interferometric processing using full-aperture approach, IEEE Geoscience and Remote Sensing Letters, 11(9): 1559-1563. https://doi.org/10.1109/Lgrs.2014.2301461   DOI
4 Moore, R. K., J. P. Claassen, and Y. H. Lin, 1981. Scanning spaceborne synthetic aperture radar with integrated radiometer, IEEE Transactions on Aerospace and Electronic Systems, AES-17(3): 410-421. https://doi.org/10.1109/Taes.1981.309069   DOI
5 Moreira, A., P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, 2013. A tutorial on synthetic aperture radar, IEEE Geoscience and Remote Sensing Magazine, 1(1): 6-43. https://doi.org/10.1109/Mgrs.2013.2248301   DOI
6 Raney, R. K., 1992. An Exact wide field digital imaging algorithm, International Journal of Remote Sensing, 13(5): 991-998. https://doi.org/10.1080/01431169208904173   DOI
7 Raney, R. K., H. Runge, R. Bamler, I. G. Cumming, and F. H. Wong, 1994. Precision SAR processing using chirp scaling, IEEE Transactions on Geoscience and Remote Sensing, 32(4): 786-799. https://doi.org/10.1109/36.298008   DOI
8 Tomiyasu, K., 1981. Conceptual performance of a satellite borne, wide swath synthetic aperture radar, IEEE Transactions on Geoscience and Remote Sensing, GE-19(2): 108-116. https://doi.org/10.1109/TGRS.1981.350361   DOI
9 Won, J. S. and W. M. Moon, 1992. Inversion of synthetic aperture radar for surface scattering, Geophysical Journal International, 108(2): 423-432. https://doi.org/10.1111/j.1365-246X.1992.tb04625.x   DOI
10 Moreira, A., J. Mittermayer, and R. Scheiber, 1996. Extended chirp scaling algorithm for air- and spaceborne SAR data processing in stripmap and ScanSAR imaging modes, IEEE Transactions on Geoscience and Remote Sensing, 34(5): 1123-1136. https://doi.org/10.1109/36.536528   DOI
11 Bamler, R. and M. Eineder, 1996. ScanSAR processing using standard high precision SAR algorithms, IEEE Transactions on Geoscience and Remote Sensing, 34(1): 212-218. https://doi.org/10.1109/36.481905   DOI
12 Lanari, R. and G. Fornaro, 1997. A short discussion on the exact compensation of the SAR range-dependent range cell migration effect, IEEE Transactions on Geoscience and Remote Sensing, 35(6): 1446-1452. https://doi.org/10.1109/36.649799   DOI
13 Cumming, I. G. and F. H. Wong, 2005. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation, Artech House, Norwood, MA, USA.
14 Holzner, J. and R. Bamler, 2002. Burst-mode and ScanSAR interferometry, IEEE Transactions on Geoscience and Remote Sensing, 40(9): 1917-1934. https://doi.org/10.1109/TGRS.2002.803848   DOI
15 Abramov, S., V. Abramova, V. Lukin, N. Ponomarenko, B. Vozel, K. Chehmi, K. Egiazarian, and J. Astola, 2014. Methods for blind estimation of speckle variance in SAR images: Simulation results and verification for real-life data, In: Awrejcewicz, J. (Ed.), Computational and Numerical Simulations, IntechOpen, London, UK. https://doi.org/10.5772/57040   DOI
16 Bamler, R., 1995. Optimum look weighting for burst-mode and ScanSAR processing, IEEE Transactions on Geoscience and Remote Sensing, 33(3): 722-725. https://doi.org/10.1109/36.387587   DOI
17 Bamler, R. and J. Holzner, 2004. ScanSAR interferometry for RADARSAT-2 and RADARSAT-3, Canadian Journal of Remote Sensing, 30(3): 437-447. https://doi.org/10.5589/m03-070   DOI
18 Cumming, I. G. and D. C. Bast, 2004. A new hybrid-beam data acquisition strategy to support ScanSAR radiometric calibration, IEEE Transactions on Geoscience and Remote Sensing, 42(1): 3-13. https://doi.org/10.1109/TGRS.2003.816666   DOI
19 Gebert, N., G. Krieger, and A. Moreira, 2010. Multichannel azimuth processing in ScanSAR and TOPS mode operation, IEEE Transactions on Geoscience and Remote Sensing, 48(7): 2994-3008. https://doi.org/10.1109/TGRS.2010.2041356   DOI
20 De Zan, F. and A. M. Guarnieri, 2006. TOPSAR: Terrain observation by progressive scans, IEEE Transactions on Geoscience and Remote Sensing, 44(9): 2352-2360. https://doi.org/10.1109/TGRS.2006.873853   DOI
21 Guarnieri, A. M. and C. Prati, 1996. ScanSAR focusing and interferometry, IEEE Transactions on Geoscience and Remote Sensing, 34(4): 1029-1038. https://doi.org/10.1109/36.508420   DOI
22 Johnson, W. T. K., 1991. Magellan imaging radar mission to Venus, Proceedings of the IEEE, 79(6): 777-790. https://doi.org/10.1109/5.90157   DOI
23 Kirk, J. C., 1975. A Discussion of digital processing in synthetic aperture radar, IEEE Transactions on Aerospace and Electronic Systems, AES-11(3): 326-337. https://doi.org/10.1109/TAES.1975.308082   DOI
24 Song, J.-H., W.-K. Lee, and D.-H. Kim, 2010. Radarsat-1 ScanSAR quick-look signal processing and demonstration using SPECAN algorithm, Korean Journal of Remote Sensing, 26(2): 75-86. https://doi.org/10.7780/kjrs.2010.26.2.75   DOI