DOI QR코드

DOI QR Code

Application of Terrestrial LiDAR for Displacement Detecting on Risk Slope

위험 경사면의 변위 검출을 위한 지상 라이다의 활용

  • Lee, Keun-Wang (Department of the Multimedia Science, Chungwoon University) ;
  • Park, Joon-Kyu (Department of Civil Engineering, Seoil University)
  • 이근왕 (청운대학교 멀티미디어학과) ;
  • 박준규 (서일대학교 토목공학과)
  • Received : 2018.12.01
  • Accepted : 2019.01.04
  • Published : 2019.01.31

Abstract

In order to construct 3D geospatial information about the terrain, current measurement using a total station, remote sensing, GNSS(Global Navigation Satellite System) have been used. However, ground survey and GNSS survey have time and economic disadvantages because they have to be surveyed directly in the field. In case of using aerial photographs and satellite images, these methods have the disadvantage that it is difficult to obtain the three-dimensional shape of the terrain. The terrestrial LiDAR can acquire 3D information of X, Y, Z coordinate and shape obtained by scanning innumerable laser pulses at densely spaced intervals on the surface of the object to be observed at high density, and the processing can also be automated. In this study, terrestrial LiDAR was used to analyze slope displacement. Study area slopes were selected and data were acquired using LiDAR in 2016 and 2017. Data processing has been used to generate slope cross section and slope data, and the overlay analysis of the generated data identifies slope displacements within 0.1 m and suggests the possibility of using slope LiDAR on land to manage slopes. If periodic data acquisition and analysis is performed in the future, the method using the terrestrial lidar will contribute to effective risk slope management.

기존에는 지형에 대한 3차원 공간정보 구축을 위해 주로 토털스테이션을 이용한 현황측량, 원격탐사, GNSS(Global Navigation Satellite System) 등의 방법이 주로 활용되어 왔다. 하지만 토털스테이션이나 GNSS는 대상지에 접근과 많은 관측을 요구하기 때문에 작업효율과 경제성이 떨어지며, 항공사진이나 인공위성영상은 지형의 3차원 형상을 취득하기 어렵다는 단점이 있다. 지상 LiDAR(Light Detection And Ranging)는 측정 대상물에 무수히 많은 레이저를 주사하여 X, Y, Z 좌표와 형상에 대한 정보를 얻을 수 있으며, 자료처리의 자동화가 가능한 장점이 있다. 본 연구에서는 지상 LiDAR를 이용하여 사면의 변위를 검출하고자 하였다. 연구대상 사면 3개소를 선정하고, 2016년과 2017년에 대상 사면에 대한 자료를 취득하였으며, 자료 처리를 통해 경사면의 형상과 단면에 대한 데이터를 생성할 수 있었다. 또한 생성된 데이터의 중첩분석을 통해 효과적으로 사면의 변위가 0.1m 이내임을 파악함으로써, 위험사면의 관리를 위한 지상 LiDAR의 활용 가능성을 제시하였다. 향후 주기적인 데이터 취득 및 분석이 이루어진다면 지상 LiDAR를 이용한 방법은 효과적인 위험사면 관리에 기여할 것이다.

Keywords

SHGSCZ_2019_v20n1_323_f0001.png 이미지

Fig. 1. Study Flow

SHGSCZ_2019_v20n1_323_f0002.png 이미지

Fig. 2. One of Target Slope

SHGSCZ_2019_v20n1_323_f0003.png 이미지

Fig. 3. Location of Study Area

SHGSCZ_2019_v20n1_323_f0004.png 이미지

Fig. 4. Terrestrial LiDAR

SHGSCZ_2019_v20n1_323_f0005.png 이미지

Fig. 5. Scanned Data

SHGSCZ_2019_v20n1_323_f0006.png 이미지

Fig. 6. Data Processing Work Flow

SHGSCZ_2019_v20n1_323_f0007.png 이미지

Fig. 7. Section Created using Pointcloud

SHGSCZ_2019_v20n1_323_f0008.png 이미지

Fig. 8. Mesh data of 2016 – Slope 1

SHGSCZ_2019_v20n1_323_f0009.png 이미지

Fig. 9. Mesh data of 2017 – Slope 1

SHGSCZ_2019_v20n1_323_f0010.png 이미지

Fig. 10. Amount of Change by Mesh Overlay –Slope 1

Table 1. Coordinate of Control Points

SHGSCZ_2019_v20n1_323_t0001.png 이미지

Table 2. Displacement of Slope

SHGSCZ_2019_v20n1_323_t0002.png 이미지

References

  1. M. K. Chung, C. J. Kim, K. H. Choi D. K. Chung, and Y. I. Kim, "Development of LiDAR Simulator for Backpack-mounted Mobile Indoor Mapping System", Journal of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography, Vol.35, No.2, pp.91-102, 2017. DOI: https://doi.org/10.7848/ksgpc.2017.35.2.91
  2. G. S. Lee, I. H. Jeong, Y. S. Choi and S. B. Kim, "A Fundamental Study about a Quality Certification of 3D Precision Indoor Geospatial Information - Focused on Yeongdeungpo Station -", Journal of the Korean Society for Geospatial Information Science, Vol. 23, No. 1, pp.3-14, 2015. DOI: http://dx.doi.org/10.7319/kogsis.2015.23.1.003
  3. Y. H. Wang, J. S. Lee, S. K. Kim and H. G. Shon, "Evaluation of Mobile Device Based Indoor Navigation System by Using Ground Truth Information from Terrestrial LiDAR", Journal of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography, Vol.36, No.5, pp.395-401, 2018. DOI: https://doi.org/10.7848/ksgpc.2018.36.5.395
  4. T. D. Acharya, I. T. Yang, and D. H. Lee, "Comparative Analysis of Digital Elevation Models between AW3D30, SRTM30 and Airborne LiDAR: A Case of Chuncheon, South Korea", Journal of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography, Vol.36, No.1, pp.17-24, 2018. DOI: https://doi.org/10.7848/ksgpc.2018.36.1.17
  5. S. Y. Park, D. S. Chang, J. H. Jung, Y. J. Kim, and Y. S. Kim, "Prediction of Slope Failure Using Control Chart Method", Journal of the Korean Geosynthetics Society, Vol.17, No.2, pp.9-18, 2018. DOI: https://doi.org/10.12814/jkgss.2018.17.2.009
  6. I. T. Yang, T. D. Acharya, and D. H. Lee, "Landslide Susceptibility Mapping for 2015 Earthquake Region of Sindhupalchowk, Nepal using frequency ratio", Journal of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography, Vol.34, No.4, pp.443-451, 2016. DOI: http://dx.doi.org/10.7848/ksgpc.2016.34.4.443
  7. D. B. Kang, J. C. Huh, and K. N. Ko, "Analysis of Factors Influencing the Measurement Error of Ground-based LiDAR", Journal of the Korean Solar Energy Society, Vol.37, No.6, pp.25-37, 2017. DOI: https://doi.org/10.7836/kses.2017.37.6.025
  8. T. Van Haute, E. De Poorter, F. Lemic, V. Handziski, N. Wirstrom, T. Voigt, A. Wolisz, and I. Moerman, "Platform for benchmarking of RF-based indoor localization solutions," IEEE Communications Magazine, Vol.53, No.9, pp. 126-133, 2015. DOI: https://doi.org/10.1109/MCOM.2015.7263356
  9. RIEGL. Laser Measurement Systems, Available From: http://www.riegl.com/(accessed Dec., 10, 2018)
  10. Trimble. 3D Laser Scanner, Available From: http://www.trimble.com/(accessed Dec., 10, 2018)