• Title/Summary/Keyword: 3D Short

Search Result 1,510, Processing Time 0.038 seconds

3-Dimensional Printing for Mesh Types of Short Arm Cast by Using Computed Tomography (전산화단층영상을 이용한 그물형 손목 부목의 3D 프린팅)

  • Seoung, Youl-Hun
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.1
    • /
    • pp.308-315
    • /
    • 2015
  • The purpose of this study, using 3D printer, was tried to fabricate the short arm cast of mesh types that can be hygienic and adequate ventilation with a good radiography. We used the multi channel computed tomography (MDCT) with three dimension printer device of the fused deposition modeling (FDM) techniques. The material is used a degradable plastic (poly lactic acid, PLA). Three-dimensional images of the short arm were obtained in the MDCT and then make the three-dimensional volume rendering. Three dimension volume rendering of the short arm is implemented as a tomography obtained in MDCT. Virtual mesh type cast model was output as three-dimensional images is designed based on the three-dimensional images of the short arm. As a results, the cast output by 3D printers were able to obtain excellent radiograph images than the conventional cast, and then it can decreased itching with unsanitary, and can break down easily to the cast. In conclusion, the proposed virtual mesh type cast output by 3D printers could be used as a basis for future three-dimensional printing cast productions and offered help to patients in the real life.

3-Axial Isotropic Electric-Field Probe Design with Resistor-Loaded Short Dipole (저항 부하된 소형 다이폴을 이용한 3축 등방성 전기장 프로브 설계)

  • Moon, Sung-Won;Jang, Byung-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.3
    • /
    • pp.246-249
    • /
    • 2017
  • In this paper, we designed the 3-axis isotropic electric-field measurement probe using resistor-loaded short dipole with lumped chip resistors. The designed probe shows good isotropic characteristics as well as wideband and low sensitivity. The isotropic characteristics of ${\pm}0.39dB$ from 100 kHz to the 3 GHz band were derived and the reception sensitivity was 0.1 V/m. The frequency response is within 3 dB of the whole section, especially ${\pm}1.3dB$ from 150 kHz to 3 GHz, which is superior to the conventional electric field probe with short dipoles.

Expression of Surrealism in Chris Landreth's 3D Short, the end (크리스 랜드레스의 3D 단편 애니메이션 the end에 나타난 초현실주의 표현)

  • Kim, Chee-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.10
    • /
    • pp.105-114
    • /
    • 2007
  • The purpose of this study is to investigate how to express Surrealism techniques in Chris Landreth who is very famous for 3D short such as Ryan. The case works are focused on 'the end', Chris Landreth's early work. He set up situation of the absurd and describes human being's alienation in animation. A phase of social life is not only revealed with vivid colors and his own surrealism techniques but communication capacity of 3D animation is also shown. Digital Technology, reproducing impossible images is not all about 3D animation. As well as this, it is not far away the way of creating arts. 3D animation will be shown the new possibilities with extension and harmony of all kinds of arts expression.

STRESS DISTRIBUTION PATTERN OF THE DIFFERENT DIAMETER AND LENGTH OF SHORT IMPLANTS ACCORDING TO THE BONE QUALITY : 3-D FINITE ELEMENTS ANALYSIS (상이한 골질과 제원에 따른 짧은 임프란트의 응력 분포: 3차원 유한 요소 분석)

  • Kim, Han-Koo;Kim, Chang-Hyen;Pyo, Sung-Woon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.2
    • /
    • pp.116-126
    • /
    • 2009
  • The use of short implants has been accepted risky from biomechanical point of view. However, short implants appear to be a long term viable solution according to recent clinical reports. The purpose of this study was to investigate the effect of different diameter and length of implant size to the different type of bone on the load distribution pattern. Stress analysis was performed using 3-dimensional finite element analysis(3D-FEA). A three-dimensional linear elastic model was generated. All implants modeled were of the various diameter(${\phi}4.0$, 4.5, 5.0 and 6.0 mm) and varied in length, at 7.0, 8.5 and 10.0 mm. Each implant was modeled with a titanium abutment screw and abutment. The implants were seated in a supporting D2 and D4 bone structure consisting of cortical and cancellous bone. An amount of 100 N occlusal load of vertical and $30^{\circ}$ angle to axis of implant and to buccolingual plane were applied. As a result, the maximum equivalent stress of D2 and D4 bones has been concentrated upper region of cortical bone. As the width of implant is increased, the equivalent stress is decreased in cancellous bone and stress was more homogeneously distributed along the implants in all types of bone. The short implant of diameter 5.0mm, 6.0mm showed effective stress distribution in D2 and D4 bone. The oblique force of 100N generated more concentrated stress on the D2 cortical bone. Within the limitations of this study, the use of short implant may offer a predictable treatment method in the vertically restricted sites.

Design and Fabrication of a Weathercock-Shaped Double Bandwidth Microstrip Patch Antenna that Combines U-slot and Short-pin for WLAN Systems Systems (WLAN System을 위한 U-slot 및 Short-pin 결합한 바람개비 모양의 이중대역(5.2/5.8GHz) 마이크로스트립 패치 안테나 설계 및 제작)

  • Kim, Soon-Seob;Choi, Young-June;Joo, Young-Dal;Jung, Yoong-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.5
    • /
    • pp.337-343
    • /
    • 2013
  • In this paper, IEEE 802.11 based WLAN(5.2/5.8GHz) wideband Weathercock-shaped microstrip patch antenna was designed and manufactured. The antenna has a size of $17.4{\times}17.4mm^2$ and utilized FR-4 board. The size was minimized for mobility, and Weathercock-shaped U-slot and short-pin was inserted to satisfy adequate bandwidth and double bandwidth resonance characteristics. In addition, the antenna incorporated single both-sided patch, and simulation design optimized the Weathercock-shaped, position of the U-slot and the short-pin, and the length of the patch for the measurement. The manufactured antenna achieved a bandwidth of 695MHz from 5.2~5.8GHz zone(Return loss<-10dB). Achieved a beam width of $81.13^{\circ}$ and $85.43^{\circ}$ for 3-dB beam width of H plane and E p;ane radiation pattern, there was 3.17~4.85dBi gain.

Improvement of Track Tracking Performance Using Deep Learning-based LSTM Model (딥러닝 기반 LSTM 모형을 이용한 항적 추적성능 향상에 관한 연구)

  • Hwang, Jin-Ha;Lee, Jong-Min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.189-192
    • /
    • 2021
  • This study applies a deep learning-based long short-term memory(LSTM) model to track tracking technology. In the case of existing track tracking technology, the weight of constant velocity, constant acceleration, stiff turn, and circular(3D) flight is automatically changed when tracking track in real time using LMIPDA based on Kalman filter according to flight characteristics of an aircraft such as constant velocity, constant acceleration, stiff turn, and circular(3D) flight. In this process, it is necessary to improve performance of changing flight characteristic weight, because changing flight characteristics such as stiff turn flight during constant velocity flight could incur the loss of track and decreasing of the tracking performance. This study is for improving track tracking performance by predicting the change of flight characteristics in advance and changing flight characteristic weigh rapidly. To get this result, this study makes deep learning-based Long Short-Term Memory(LSTM) model study the plot and target of simulator applied with radar error model, and compares the flight tracking results of using Kalman filter with those of deep learning-based Long Short-Term memory(LSTM) model.

  • PDF

Short Circuit Waveform Control Type SMAW Welding Power Source Development and Characteristic Evaluation (단락파형제어형 SMAW용 용접전원 개발 및 특성평가)

  • Yang, Hyun-Min;Ryoo, Hoi-Soo;Hyun, Soong-Keun
    • Journal of Welding and Joining
    • /
    • v.34 no.3
    • /
    • pp.40-46
    • /
    • 2016
  • The digital controlled SMA welding power source having the hot start current and short circuit waveform control was developed. The inverter power controller was used an analog circuit and the short circuit waveform controller was developed using a 8-bit MCU. For the evaluation of the developed SMA welding power source it were compared with a domestic welding power sources. Using the high titanium oxide type and low hydrogen type electrodes, the characteristics of hot start and short circuit was evaluated. Developed SMA welding power source shows good start performance. Also, arc stability and low current weldability were improved by the short circuit waveform control.

Impact of Fin Aspect Ratio on Short-Channel Control and Drivability of Multiple-Gate SOI MOSFET's

  • Omura, Yasuhisa;Konishi, Hideki;Yoshimoto, Kazuhisa
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.4
    • /
    • pp.302-310
    • /
    • 2008
  • This paper puts forward an advanced consideration on the design of scaled multiple-gate FET (MuGFET); the aspect ratio ($R_{h/w}$) of the fin height (h) to fin width (w) of MuGFET is considered with the aid of 3-D device simulations. Since any change in the aspect ratio must consider the trade-off between drivability and short-channel effects, it is shown that optimization of the aspect ratio is essential in designing MuGFET's. It is clearly seen that the triple-gate (TG) FET is superior to the conventional FinFET from the viewpoints of drivability and short-channel effects as was to be expected. It can be concluded that the guideline of w < L/3, where L is the channel length, is essential to suppress the short-channel effects of TG-FET.

Three-dimensional Modeling of Transient Enhanced Diffusion (과도 증속 확산(TED)의 3차원 모델링)

  • 이제희;원태영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.6
    • /
    • pp.37-45
    • /
    • 1998
  • In this paper, we report the first three-dimensional simulation result of the transient enhanced diffusion(TED) of dopants in the ion-implanted silicon by employing our 3D semiconductor process simulator, INPROS system. In order to simulate three-dimensional TED redistribution of dopants in silicon, the dopant distributions after the ion implantation was calculated by Monte Carlo(MC) method, followed by finite element(FE) numerical solver for thermal annealing. Excellent agreement between the simulated 3D profile and the SIMS data has been obtained for ion-implanted arsenic and phosphorus after annealing the boron marker layer at 75$0^{\circ}C$ for 2 hours. Our three-dimensional TED simulation could successfully explain the reverse short channel effect(RSCE) by taking the 3D point defect distribution into account. A coupled TED simulation and device simulation allows reverse short channel effect on threshold to be accurately predicted.

  • PDF

Burial and scour of truncated cones due to long-crested and short-crested nonlinear random waves

  • Myrhaug, Dag;Ong, Muk Chen
    • Ocean Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.21-37
    • /
    • 2014
  • This paper provides a practical stochastic method by which the burial and scour depths of truncated cones exposed to long-crested (2D) and short-crested (3D) nonlinear random waves can be derived. The approach is based on assuming the waves to be a stationary narrow-band random process, adopting the Forristall (2000) wave crest height distribution representing both 2D and 3D nonlinear random waves. Moreover, the formulas for the burial and the scour depths for regular waves presented by Catano-Lopera et al. (2011) for truncated cones are used. An example of calculation is also presented.