• Title/Summary/Keyword: 3D Printed Electronics

Search Result 79, Processing Time 0.028 seconds

Evaluation and Development of Multi Thermal Bubble Ink Jet 3D Printing System (다중써멀버블 잉크젯방식의 3D 프린팅 시스템 개발 및 성능평가)

  • Shin, Mun Gwan;Bae, Sung Woo;Kim, Jung Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.9
    • /
    • pp.787-792
    • /
    • 2015
  • Recently, 3D printing technology is a hot issue in various industrial fields. According to the user's application, it allows for the free form fabrication method to be utilized in a wide range. The powder based fusion technique is one of the 3D printing methods. When using this method it is possible to apply the various binder jetting techniques such as piezo, thermal bubble jet, dispenser and so on. In this paper, a multi thermal bubble ink jet was integrated for jetting of powder binding material and developing a power fused 3D printing system. For high quality 3D printing parts, it needs an analysis and evaluation of the behavior of the thermal bubble ink jet head. In the experiment, a correlation between jetting binder quantity and layer thickness of powder was investigated, and a 3D part model was fabricated, which was used by measuring the scale factor.

Electrical Characteristics of Copper Circuit using Inkjet Printing (잉크젯 프린팅 방식으로 형성된 구리 배선의 전기적 특성 평가)

  • Kim, Kwang-Seok;Koo, Ja-Myeong;Joung, Jae-Woo;Kim, Byung-Sung;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.43-49
    • /
    • 2010
  • Direct printing technology is an attractive metallization method, which has become immerging as "Green technology" to the conventional photolithography, on account of low cost, simple process and environment-friendliness. In order to commercialize the printed electronics in industry, it is essential to evaluate the electrical properties of conductive circuits using direct printing technology. In this contribution, we focused on the electrical characteristics of inkjet-printed circuits. A Cu nanoink was inkjet-printed onto a Bisaleimide triazine(BT) substrate with parallel transmission line(PTL) and coplanar waveguide(CPW) type, then was sintered at $250^{\circ}C$ for 30 min. We calculated the resistivity of printed circuits through direct current resistance by the measurement of I-V curve: the resistivity was approximately 0.558 ${\mu}{\Omega}{\cdot}cm$ which is about 3.3 times that of bulk Cu. Cascade's probe system in the frequency range from 0 to 30 GHz were employed to measure the Scattering parameter(S-parameter) with or without a gap between the substrate and the probe station chuck. The result of measured S-parameter showed that all printed circuits had over 5 dB of return loss in the entire frequency range. In the curve of insertion loss, $S_{21}$, showed that the PTL type circuits had better transmission of radio frequency (RF) than CPW type.

Lightness Compensation for Anaglyph Images to Reduce Retinal Rivalry (Anaglyph 영상의 망막경합 최소화를 위한 밝기 보상)

  • Jang, Woo-Heon;Lee, Tae-Hyoung;Kim, Dae-Chul;Lee, Cheol-Hee;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.1
    • /
    • pp.88-96
    • /
    • 2012
  • According to development of technology for media, observers try to watch the realities from images, as follows, 3D imaging has been extremely developed. 3D image gives depth in the image, observers feel in nature. Different image perception from left and right eyes make the 3D image. Anaglyph which is one of the ways to make an image of three dimensions is for obtaining an image of three dimensions by using color filter glasses. Anaglyph has a little amount of calculation and is easy to make, and it has a good point that anaglyph can be used in more wide field because it can create an image of three dimensions to the output of print like printed matter. However, the phenomenon of retinal rivalry can cause a feeling of fatigue because a difference of brightness of the left image and the right image happen. The way to reduce this problem is made by cutting down a difference of brightness. In the result, retinal rivalry can be reduced. We reduced a difference of the brightness of the left and the right image by utilizing the brightness and average of the original image to reduce retinal rivalry and we made better colors of anaglyph by using the way that we keep the hue caused by a change of brightness and supplement saturation about color distortion which is created at that time.

Crossover from weak anti-localization to weak localization in inkjet-printed Ti3C2Tx MXene thin-film

  • Jin, Mi-Jin;Um, Doo-Seung;Ogbeide, Osarenkhoe;Kim, Chang-Il;Yoo, Jung-Woo;Robinson, J. W. A.
    • Advances in nano research
    • /
    • v.13 no.3
    • /
    • pp.259-267
    • /
    • 2022
  • Two-dimensional (2D) transition metal carbides/nitrides or "MXenes" belong to a diverse-class of layered compounds, which offer composition- and electric-field-tunable electrical and physical properties. Although the majority of the MXenes, including Ti3C2Tx, are metallic, they typically show semiconductor-like behaviour in their percolated thin-film structure; this is also the most common structure used for fundamental studies and prototype device development of MXene. Magnetoconductance studies of thin-film MXenes are central to understanding their electronic transport properties and charge carrier dynamics, and also to evaluate their potential for spin-tronics and magnetoelectronics. Since MXenes are produced through solution processing, it is desirable to develop deposition strategies such as inkjet-printing to enable scale-up production with intricate structures/networks. Here, we systematically investigate the extrinsic negative magnetoconductance of inkjetprinted Ti3C2Tx MXene thin-films and report a crossover from weak anti-localization (WAL) to weak localization (WL) near 2.5K. The crossover from WAL to WL is consistent with strong, extrinsic, spin-orbit coupling, a key property for active control of spin currents in spin-orbitronic devices. From WAL/WL magnetoconductance analysis, we estimate that the printed MXene thin-film has a spin orbit coupling field of up to 0.84 T at 1.9 K. Our results and analyses offer a deeper understanding into microscopic charge carrier transport in Ti3C2Tx, revealing promising properties for printed, flexible, electronic and spinorbitronic device applications.

EMI Analysis on High Speed Digital Circuite (고속 디지털 회로 PCB 상의 EMI 해석)

  • Kim, Tae-Hong;Lee, Hyeon-Jin;Lim, Yeong-Seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.12
    • /
    • pp.159-164
    • /
    • 2005
  • Recently, it has demanded high-speed digital circuits as information increase. Therefore, electromagnetic characteristics of compact microwave circuit occurred importantly. And, the effect of the imperfect ground plane on the signal integrity and influence of coupling between two parallel lines for high-speed digital transmission line on the printed circuit board is investigated by FDTD simulations in 3-D electromagnetic analysis method. The results of FDTD simulation are compared with the ADS simulation in commercial software, analyzed lumped element of modeling and electromagnetic wave's radiation of slot as frequency. As a consequence, when the slot in the ground plane is under microstrip line, it has much effect on propagation of wave.

A study on the Development of Fusion Education Attempting to Utilize 3D Printing for the Fabrication and Control of Robot Arms (3D 프린터를 활용한 로봇 팔의 제작과 제어를 위해 시도한 융합 교육의 발전 방안 연구)

  • Eum-young Chang;Hyung-jin Yu
    • Journal of Practical Engineering Education
    • /
    • v.16 no.2
    • /
    • pp.121-128
    • /
    • 2024
  • This study introduces specializer high school students , as a fusion education method using Inventor software to design a robot arm, which is then 3D printed and controlled by an Arduino microcontroller. Students gain practical experience and have the opportunity to integrate knowledge and skills from various academic fields. They start by designing in CAD software, proceed to fabricate actual robot arm components using 3D printing technology, and finally program and control the assembled robot arm. This interdisciplinary education enhances students' problem-solving abilities, fosters creativity, and increases their motivation to learn. To implement such educational endeavors in actual curricula, ongoing teacher support and appropriate resources are essential. This research serves as a foundational exploration of the applicability of fusion education in future learning contexts.

The Wide-band Two-element Microstrip Slot Array Antenna with the Cross-shaped Feedline

  • Shin, Ho-Sub;Kim, Nam;Jang, Yong-Woong
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.163-166
    • /
    • 2000
  • The design, numerical simulation, and an experimental implementation of two-element cross-shaped microstrip line-fed printed slot array antenna for IMT-2000 at the 2.0 GHz band is presented in this paper. The proposed antenna with relative permittivity 4.3 and thickness 1.0mm is analyzed by the Finite-Difference Time-Domain (FDTD) method. It was shown that the measured 2.0 VSWR bandwidth of one-element microstrip slot antenna is from 1.42 GHz to 2.69 GHz, which is approximately 61.8% and that of two-element microstrip slot array antenna is from 1.42 GHz to 2.56 GHz, which is approximately 57.3% And it was shown that the measured gain of one-element microstrip slot antenna is 2.75 dBi and that of two-element microstrip slot antenna is 4.75 dEi. The antennas were fabricated and tested. The measured results are in good agreements with the FDTD results.

  • PDF

Analysis on the Characteristics of Single-walled Carbon Nanotube Transistor Printed by Roll-to-Roll and Roll-to-Device Method

  • Yun, Yu-Sang;Majima, Yutaka;Park, Wan-Jun;Azuma, Yasuo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.262-263
    • /
    • 2011
  • Flexible electronics, a future technology of electronics, require a low cost integrated circuit that can be built on various types of the flexible substrates. As a potential candidate for this application, a single walled carbon nanotube network is studied as an active device with a scheme of thin film transistor. Transistors are formed on a plastic foil by the Roll-to-Roll (R2R) and the Roll-to-Device (R2D) printing method. For both printing methods, electrical transports for the transistors are presented with the temperature dependence of threshold voltage (V_Th) and mobility from the measured transfer curves at temperatures ranging from 10 K to 300 K. It is observed that ${\mu}=0.044cm^2/V{\cdot}sec$ and V_Th=7.28V for R2R and ${\mu}=0.025cm^2/V{\cdot}sec$ and V_Th=3.10V for R2D, both for the temperature at 300K. Temperature dependence of mobility and V_Th is observed. However for R2R, the temperature dependence of V_Th is constant. It is the difference between, R2R and R2D.

  • PDF

A Study on a Hetero-Integration of RF MEMS Switch and DC-DC Converter Using Commercial PCB Process (상용 PCB 공정을 이용한 RF MEMS 스위치와 DC-DC 컨버터의 이종 통합에 관한 연구)

  • Jang, Yeonsu;Yang, Woo-Jin;Chun, Kukjin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.6
    • /
    • pp.25-29
    • /
    • 2017
  • This paper presents a hetero-integration of electrostatically actuated RF MEMS Switch and step up DC-DC converter on a redistribution layer using commercial PCB process. RF characteristics of Duroid with $56{\Omega}$ impedance GCPW transmission line and that of FR4 with $59{\Omega}$ impedance CPW transmission line were analyzed. From DC to 6GHz, RF characteristics of Duroid were better than that of FR4, insertion loss was 2.08dB lower, return loss was 3.91dB higher, and isolation was 3.33dB higher.

Recent Progress in Micro In-Mold Process Technologies and Their Applications (마이크로 인몰드 공정기술 기반 전자소자 제조 및 응용)

  • Sung Hyun Kim;Young Woo Kwon;Suck Won Hong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.1-12
    • /
    • 2023
  • In the current era of the global mobile smart device revolution, electronic devices are required in all spaces that people interact with. The establishment of the internet of things (IoT) among smart devices has been recognized as a crucial objective to advance towards creating a comfortable and sustainable future society. In-mold electronic (IME) processes have gained significant industrial significance due to their ability to utilize conventional high-volume methods, which involve printing functional inks on 2D substrates, thermoforming them into 3D shapes, and injection-molded, manufacturing low-cost, lightweight, and functional components or devices. In this article, we provide an overview of IME and its latest advances in application. We review biomimetic nanomaterials for constructing self-supporting biosensor electronic materials on the body, energy storage devices, self-powered devices, and bio-monitoring technology from the perspective of in-mold electronic devices. We anticipate that IME device technology will play a critical role in establishing a human-machine interface (HMI) by converging with the rapidly growing flexible printed electronics technology, which is an integral component of the fourth industrial revolution.