Browse > Article

Electrical Characteristics of Copper Circuit using Inkjet Printing  

Kim, Kwang-Seok (School of Advanced Materials Science and Engineering, Sungkyunkwan University)
Koo, Ja-Myeong (Inkjet Business Group, Samsung Electro-Mechanics)
Joung, Jae-Woo (Samsung Electro-Mechanics)
Kim, Byung-Sung (School of Information and Communication Engineering, Sungkyunkwan University)
Jung, Seung-Boo (School of Advanced Materials Science and Engineering, Sungkyunkwan University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.17, no.3, 2010 , pp. 43-49 More about this Journal
Abstract
Direct printing technology is an attractive metallization method, which has become immerging as "Green technology" to the conventional photolithography, on account of low cost, simple process and environment-friendliness. In order to commercialize the printed electronics in industry, it is essential to evaluate the electrical properties of conductive circuits using direct printing technology. In this contribution, we focused on the electrical characteristics of inkjet-printed circuits. A Cu nanoink was inkjet-printed onto a Bisaleimide triazine(BT) substrate with parallel transmission line(PTL) and coplanar waveguide(CPW) type, then was sintered at $250^{\circ}C$ for 30 min. We calculated the resistivity of printed circuits through direct current resistance by the measurement of I-V curve: the resistivity was approximately 0.558 ${\mu}{\Omega}{\cdot}cm$ which is about 3.3 times that of bulk Cu. Cascade's probe system in the frequency range from 0 to 30 GHz were employed to measure the Scattering parameter(S-parameter) with or without a gap between the substrate and the probe station chuck. The result of measured S-parameter showed that all printed circuits had over 5 dB of return loss in the entire frequency range. In the curve of insertion loss, $S_{21}$, showed that the PTL type circuits had better transmission of radio frequency (RF) than CPW type.
Keywords
Scattering parameter (S-parameter); Resistivity; Copper nanoink; Inkjet printing;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 B. K. Park, D. Kim, S. Jeong, J. Moon and J. S. Kim, "Direct writing of copper conductive patterns by ink-jet printing", Thin Solid Films, 515(19) 7706 (2007).   DOI   ScienceOn
2 V. Subramanian, J. M. J. Frechet, P. C. Chang, D. C. Huang, J. B. Lee, S. E. Molesa, A. R. Murphy, D. R. Redinger and S. K. Volkman, "Progress toward development of all-printed RFID tags: materials, processes, and devices", Proceedings of the IEEE, 93, 7, (2005) pp. 1330-1338.   DOI
3 R. K. F. Teng, A. A. Mostafa, A. Karim, "Study of solar cell fabrication using an electrostatic think-film printing method", 37(5), 419 (1990).   DOI   ScienceOn
4 E. Ramasamy, W. J. Lee, D. Y. Lee and J. S. Song, "Portable, parallel grid dye-sensitized solar cell module prepared by screen printing", Journal of Power Sources, 165(1), 446 (2007).   DOI   ScienceOn
5 B. Lee, Y. Kim, S. Yang, I. Jeong and J. Moon, "A low-curetemperature copper nano ink for highly conductive printed electrodes", J., Current Applied Physics, 9(2), 157 (2008).
6 J. W. Kim, Y. C. Lee, J. M. Kim, W. Nah, H. S. Lee, H. C. Kwon and S. B. Jung, "Characterization of direct patterned Ag circuits for RF application", Microelectronic Engineering, 87(3), 379 (2010).   DOI   ScienceOn
7 김성욱, "초미세 잉크젯 공정에 의한 전자 디바이스 제조", 기계저널, 제49권, 제3호, (2009) pp. 48-51.
8 J. H. Kim, C. Y. Lee and J.R. Kim, "Technical trends of direct printing electronics(In Kor.)", Journal of Engineering and Technology, 17, 77 (2008).
9 H. H. Lee, K. S. Chou and K. C. Huang, "Inkjet printing of nanosized silver colloids", Nanotechnology, 16(10), 2436 (2005).   DOI   ScienceOn
10 J. W. Kim, S. J. Hong, Y. S. Kim, Y. S. Kim, J. N. Lee and N. K. Kang, "Recent advances in eco-friendly nano-ink technology for display and semiconductor application(In Kor.)", J. Microelectron. Packag. Soc. 17(1), 33 (2010).   과학기술학회마을
11 S. C. Park, J. W. Kim, K. Kim, S. Park, Y. Lee and Y. B. Park, "Interfacial adhesion between screen-printed Ag and epoxy resin-coated polyimide(In Kor.)", J. Microelectron. Packag. Soc. 17(1), 41 (2010).   과학기술학회마을
12 P. Buffat and J-P. Borel, "Size effect on the melting temperature of gold particles", Physical Review A, 13(6), 2287 (1976).   DOI
13 D. Kim, S. Jeong, K. Kang and J. Moon, "Ink-jet printing of silver conductive tracks on flexible substrates", Mol. Cryst. Liq. Cryst., 459, 45 (2006).
14 Y. C. Lee, K. S. Kim, J. W. Kim, J. M. Kim, W. Nah, S. H. Lee and S. B. Jung, "Electrical characteristics of printed Ag nanopaste on polyimide substrate", J. Nanosci. Nanotechnol. 11 (In-press).
15 이종우, 이요한, 윤현남, "프린팅 기반의 투명전극 및 배선재료 개발 동향", 고분자과학과 기술, 제18권, 제3호, (2007) pp. 233-237.
16 윤성철, 임종선, 이창진, "인쇄전자소자: 고해상도 인쇄공정 기술의 현황 및 전망", 고분자과학과 기술, 제18권, 제3호, (2007) pp. 238-245.
17 K. Alexander, B. M. Matti, A. Shai and M. Shlomo, "Ink-jet printing of metallic nanoparticles and microemulsions", Macromol. Rapid Commun., 26(4), 281 (2005).   DOI   ScienceOn
18 류병환, 최영민, "차세대 평판디스플레이용 잉크젯 프린팅 기술", 기계저널, 제46권, 제12호, (2006) pp. 55-61.   과학기술학회마을
19 J. D. Lee, M. J. Kim and S. H. Lee, "Investigation of Co-firing process for Al-BSF formation of screen printing solar cells (In Kor.)", Journal of KSES, 30(1), 334 (2010).
20 L. Yang, A. Rida, R. Vyas and M. M. Tentzeris, "RFID tags and RF structures on a paper substrate using inkjet-printing technology", IEEE Trans. Microw. Theory Tech., 55(22), 2894 (2007).   DOI
21 J. W. Kim and S. B. Jung, "Electrical characterization of screen-printed conductive circuit with silver nanopaste", Jpn. J. Appl. Phys., 48, 06FD14 (2009).
22 B. K. Park, D. Kim, S. Jeong, J. Moon and J. S. Kim, "Direct writing of copper conductive patterns by ink-jet printing", Thin Solid Films, 515(19), 7706 (2007).   DOI   ScienceOn