• Title/Summary/Keyword: 3D Point Data

Search Result 1,132, Processing Time 0.029 seconds

Research on Intelligent Anomaly Detection System Based on Real-Time Unstructured Object Recognition Technique (실시간 비정형객체 인식 기법 기반 지능형 이상 탐지 시스템에 관한 연구)

  • Lee, Seok Chang;Kim, Young Hyun;Kang, Soo Kyung;Park, Myung Hye
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.3
    • /
    • pp.546-557
    • /
    • 2022
  • Recently, the demand to interpret image data with artificial intelligence in various fields is rapidly increasing. Object recognition and detection techniques using deep learning are mainly used, and video integration analysis to determine unstructured object recognition is a particularly important problem. In the case of natural disasters or social disasters, there is a limit to the object recognition structure alone because it has an unstructured shape. In this paper, we propose intelligent video integration analysis system that can recognize unstructured objects based on video turning point and object detection. We also introduce a method to apply and evaluate object recognition using virtual augmented images from 2D to 3D through GAN.

A Systems Engineering Approach to Multi-Physics Analysis of CEA Ejection Accident

  • Sebastian Grzegorz Dzien;Aya Diab
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.2
    • /
    • pp.46-58
    • /
    • 2023
  • Deterministic safety analysis is a crucial part of safety assessment, particularly when it comes to demonstrating the safety of nuclear power plant designs. The traditional approach to deterministic safety analysis models is to model the nuclear core using point kinetics. However, this simplified approach does not fully reflect the real core behavior with proper moderator and fuel reactivity feedbacks during the transient. The use of Multi-Physics approach allows more precise simulation reflecting the inherent three-dimensionality (3D) of the problem by representing the detailed 3D core, with instantaneous updates of feedback mechanisms due to changes of important reactivity parameters like fuel temperature coefficient (FTC) and moderator temperature coefficient (MTC). This paper addresses a CEA ejection accident at hot full power (HFP), in which the underlying strong and un-symmetric feedback between thermal-hydraulics and reactor kinetics exist. For this purpose, a multi-physics analysis tool has been selected with the nodal kinetics code, 3DKIN, implicitly coupled to the thermal-hydraulic code, RELAP5, for real-time communication and data exchange. This coupled approach enables high fidelity three-dimensional simulation and is therefore especially relevant to reactivity initiated accident (RIA) scenarios and power distribution anomalies with strong feedback mechanisms and/or un-symmetrical characteristics as in the CEA ejection accident. The Systems Engineering approach is employed to provide guidance in developing the work in a systematic and efficient fashion.

Point-diffraction interferometer for 3-D profile measurement of light scattering rough surfaces (광산란 거친표면의 고정밀 삼차원 형상 측정을 위한 점회절 간섭계)

  • 김병창;이호재;김승우
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.5
    • /
    • pp.504-508
    • /
    • 2003
  • We present a new point-diffraction interferometer, which has been devised for the three-dimensional profile measurement of light scattering rough surfaces. The interferometer system has multiple sources of two-point-diffraction and a CCD camera composed of an array of two-dimensional photodetectors. Each diffraction source is an independent two-point-diffraction interferometer made of a pair of single-mode optical fibers, which are housed in a ceramic ferrule to emit two spherical wave fronts by means of diffraction at their free ends. The two spherical wave fronts then interfere with each other and subsequently generate a unique fringe pattern on the test surface. A He-Ne source provides coherent light to the two fibers through a 2${\times}$l optical coupler, and one of the fibers is elongated by use of a piezoelectric tube to produce phase shifting. The xyz coordinates of the target surface are determined by fitting the measured phase data into a global model of multilateration. Measurement has been performed for the warpage inspection of chip scale packages (CSPs) that are tape-mounted on ball grid arrays (BGAs) and backside profile of a silicon wafer in the middle of integrated-circuit fabrication process. When a diagonal profile is measured across the wafer, the maximum discrepancy turns out to be 5.6 ${\mu}{\textrm}{m}$ with a standard deviation of 1.5 ${\mu}{\textrm}{m}$.

Adaptive Block-based Depth-map Coding Method (적응적 블록기반 깊이정보 맵 부호화 방법)

  • Kim, Kyung-Yong;Park, Gwang-Hoon;Suh, Doug-Young
    • Journal of Broadcast Engineering
    • /
    • v.14 no.5
    • /
    • pp.601-615
    • /
    • 2009
  • This paper proposes an efficient depth-map coding method for generating virtual-view images in 3D-Video. Virtual-view images can be generated by the view-interpolation based on the depth-map of the image. A conventional video coding method such as H.264 has been used. However, a conventional video coding method does not consider the image characteristics of the depth-map. Therefore, this paper proposes an adaptive depth-map coding method that can select between the H.264/AVC coding scheme and the proposed gray-coded bit plane-based coding scheme in a unit of block. This improves the coding efficiency of the depth-map data. Simulation results show that the proposed method, in comparison with the H.264/AVC coding scheme, improves the average BD-rate savings by 7.43% and the average BD-PSNR gains by 0.5dB. It also improves the subjective picture quality of synthesized virtual-view images using decoded depth-maps.

Transparent Manipulators Accomplished with RGB-D Sensor, AR Marker, and Color Correction Algorithm (RGB-D 센서, AR 마커, 색수정 알고리즘을 활용한 매니퓰레이터 투명화)

  • Kim, Dong Yeop;Kim, Young Jee;Son, Hyunsik;Hwang, Jung-Hoon
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.3
    • /
    • pp.293-300
    • /
    • 2020
  • The purpose of our sensor system is to transparentize the large hydraulic manipulators of a six-ton dual arm excavator from the operator camera view. Almost 40% of the camera view is blocked by the manipulators. In other words, the operator loses 40% of visual information which might be useful for many manipulator control scenarios such as clearing debris on a disaster site. The proposed method is based on a 3D reconstruction technology. By overlaying the camera image from front top of the cabin with the point cloud data from RGB-D (red, green, blue and depth) cameras placed at the outer side of each manipulator, the manipulator-free camera image can be obtained. Two additional algorithms are proposed to further enhance the productivity of dual arm excavators. First, a color correction algorithm is proposed to cope with the different color distribution of the RGB and RGB-D sensors used on the system. Also, the edge overlay algorithm is proposed. Although the manipulators often limit the operator's view, the visual feedback of the manipulator's configurations or states may be useful to the operator. Thus, the overlay algorithm is proposed to show the edge of the manipulators on the camera image. The experimental results show that the proposed transparentization algorithm helps the operator get information about the environment and objects around the excavator.

An Analytical Approach to Color Composition in Ray Tracing of Volume Data

  • Jung, Moon-Ryul;Paik, Doowon;Kim, Eunghwan
    • Journal of the Korea Computer Graphics Society
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 1996
  • In ray tracing of 3D volume data, the color of each pixel in the image is typically obtained by accumulating the contributions of sample points on the ray cast from the pixel point. This accumulation is most naturally represented by integration. In most methods, however, it is done by numerical summation because analytical solution to the integration are hard to find. This paper shows that a semi-analytical solution can be obtained for a typical ray tracing of volume data. Tentative conclusions about the significance and usefulness of our approach are presented based on our experiments.

  • PDF

A study on the Development of 3D web-map using VRML and java (Web-Map 개발을 위한 VRML과 Java의 적용)

  • 양인태;김동문;박형근
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.1
    • /
    • pp.81-87
    • /
    • 2003
  • It is very difficult assignment that grasp three-dimensional real life in Web base network environment. But, the recent simulation tools embody third dimension elements within 2 dimensions screen that is limited through third dimension implementation technology. Many GIS tools are offering excellent functions for third dimension data creation. But, research about design of third dimension GIS that use virtual reality technique in Web environment is status that is unprepared. So, in this research embodied third dimension topography map using virtual reality modelling language to produce active third dimension VR map that can supply visual information for direction, visual point that want in World Wide Web without support of expensive Map exclusive use program. And these 3D Web-Map is thought that possibility is enough as next generation map medium.

Polymorphisms of the Lipoprotein Lipase Gene of Red Seabream, Pagrus major (참돔의 lipoprotein lipase 유전자 다형성)

  • Jang, Yo-Soon;Hong, Kyung-Pyo;Noh, Choong-Hwan
    • Ocean and Polar Research
    • /
    • v.26 no.4
    • /
    • pp.551-557
    • /
    • 2004
  • Polymorphism of the lipoprotein lipase (LPL) gene which plays an important role in regulation of lipid deposition was analysed in two red seabream (pagrus major) populations (KF4, cultured KORDI line, n=100 : JPN, imported from Japan, n=100). We amplified a DNA fragment (1,091 bp) including the exon 2 region of the LPL gene, and conducted PCR-RFLP analysis using MspI and AluI. The PCR products were also sequenced. Two alleles (A and B) were found in MspI digestion and Sve alleles (A, B, C, D and E) in AluI digestion. The sequenced data revealed four nucleotide substitutions including one transversion at the MspI recognition site (nt 2,235, $C{\rightarrow}10$) and three transitions at the AluI recognition sites (nt 1,721, $A{\rightarrow}G;$ nt 2,319, $C{\rightarrow}T;$ nt 2,319, $T{\rightarrow}C$). Among them, substitutions at the nt 2,235 and 2,319 sites which are located in the exon 2 were proved to be silent point mutations. MspI polymorphism resulted in 3 genotypes, and the allele frequency was significantly different between the two fish populations, KF4 and JPN. In the case of AluI polymorphism, the 5 alleles (A, B, C, D, E) comprised 12 genotypes of the 5 alleles. KF4 population, alleles D and I were specific to the LPL gene Polymorphisms would be useful DNA markers for red seabream population.

A Study on Stress Recovery Analysis of Dimensionally Reducible Composite Beam Structure with High Aspect Ratio using VABS (VABS를 이용한 높은 세장비를 가진 복합재료 보 구조의 차원축소 및 응력복원 해석기법에 대한 연구)

  • Ahn, Sang Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.405-411
    • /
    • 2016
  • This paper presented the theory related to a two dimensional linear cross-sectional analysis, recovery relationship and a one-dimensional nonlinear beam analysis for composite beam with initial twist and high aspect ratio. Using VABS including related theory, preceding research data of the composite wing structure has been modeled and compared. Cross-sectional analysis was performed and 1-D beam was modeled at cutting point including all the details of real geometry and material. The 3-D strain distribution and margin of safety at recovery point was calculated based on the global behavior of the 1-D beam analysis and visualize numerical results.

Improved Georeferencing of a Wearable Indoor Mapping System Using NDT and Sensor Integration

  • Do, Linh Giang;Kim, Changjae;Kim, Han Sae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.5
    • /
    • pp.425-433
    • /
    • 2020
  • Three-dimensional data has been used for different applications such as robotics, building reconstruction, and so on. 3D data can be generated from an optical camera or a laser scanner. Especially, a wearable multi-sensor system including the above-mentioned sensors is an optimized structure that can overcome the drawbacks of each sensor. After finding the geometric relationships between sensors, georeferencing of the datasets acquired from the moving system, should be carried out. Especially, in an indoor environment, error propagation always causes problem in the georeferencing process. To improve the accuracy of this process, other sources of data were used to combine with LiDAR (Light Detection and Ranging) data, and various registration methods were also tested to find the most suitable way. More specifically, this paper proposed a new process of NDT (Normal Distribution Transform) to register the LiDAR point cloud, with additional information from other sensors. For real experiment, a wearable mapping system was used to acquire datasets in an indoor environment. The results showed that applying the new process of NDT and combining LiDAR data with IMU (Inertial Measurement Unit) information achieved the best result with the RMSE 0.063 m.