• Title/Summary/Keyword: 3D Geometric Modeling

Search Result 181, Processing Time 0.023 seconds

Coolant Path Geometry for Improved Electrostatic Chuck Temperature Variation (정전척 온도분포 개선을 위한 냉각수 관로 형상)

  • Lee, Ki-Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.21-23
    • /
    • 2011
  • Uniformity of plasma etching processes critically depends on the wafer temperature and its distribution. The wafer temperature is affected by plasma, chucking force, He back side pressure and the surface temperature of ESC(electrostatic chuck). In this work, 3D mathematical modeling is used to investigate the influence of the geometry of coolant path and the temperature distribution of the ESC surface. The model that has the coolant path with less change of the cross-sectional area and the curvature shows low standard deviation of the ESC surface temperature distribution than the model with the coolant path of the larger surface area and more geometric change.

The Properties of The Universal Parametrization in Geometric Modeling Using (B-spline을 이용한 기하 모델링에서 Universal Parmetrization의 특성)

  • 임충규;서영호;오원근
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.544-546
    • /
    • 2000
  • 이 논문에서는 CAGD 및 기하모델링 분야에서 최근 발표된 Universal Parametrization의 계산적 또는 응용적 특성을 고찰하고자 한다. Universal Parametrization을 이용하여 구한 B-spline의 곡선이나 곡면에 아주 자연스러운 특성을 가지고 있다. 뿐만 아니라, 다른 매개변수(Parametrization)을 이용하는 경우, 점들의 기하학적 분포나 곡선/곡면의 차수에 따라 결과의 차이가 심한 경우가 있으나 새로운 방법은 B-spline이라는 기초함수의 특성을 고려한 매개변수법이므로 이러한 결과의 차이를 최대한 줄이는 특성이 있다. 또한 점 데이터에 관해서 Affine Invariant하고 Semi-localness의 특성을 보인다. 이외에도, 계산적인 관점에서 강인성을 보유하고 있고, 많은 응용분야에서 쉽게 자유곡선이나 자유곡면 모델링을 할 수 있도록 한다. 한 예로, 3D 다각형 메쉬로부터 B-spline을 이용한 자유곡면 모델을 구하는 소프트웨어 툴을 설명한다.

  • PDF

Development of 3D Digital Map Editing System (3차원 수치지도 편집 시스템 개발)

  • Lee, Jae-Kee;Park, Ki-Surk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.3
    • /
    • pp.239-247
    • /
    • 2007
  • The 3D spatial information projects have been processed and utilized in varied fields. However, the research of the 3D digital map for a role of national base map is not enough. The draft maps, which are raw data for generating 2D digital map, shows problems in generating 3D digital map. The objective of this research is to develop 3D digital map editing system for modifying and editing of 3D digital map from 2D vector and raster information such as a draft map, 2D digital map, DEM, aerial photo and so forth. This 3D digital map editing system was designed to include data structure of geometric and attribute object under provision of ISO/TC211 and OGC standard. This system was developed to implement the function of 3D stereo editing based on stereo viewing, 3D view editing based on projective, and 3D spatial operation. Using this system, 3D digital maps were able to be successfully produced from not only existing draft maps but also modified or edited draft maps and then application results were compared and analyzed.

Evaluation of Possibility of Large-scale Digital Map through Precision Sensor Modeling of UAV (무인항공기 정밀 센서모델링을 통한 대축척 수치도화 가능성 평가)

  • Lim, Pyung-chae;Kim, Han-gyeol;Park, Jimin;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1393-1405
    • /
    • 2020
  • UAV (Unmanned Aerial Vehicle) can acquire high-resolution images due to low-altitude flight, and it can be photographed at any time. Therefore, the UAV images can be updated at any time in map production. Due to these advantages, studies on the possibility of producing large-scale digital maps using UAV images are actively being conducted. Precise digital maps can be used as base data for digital twins or smart cites. For producing a precise digital map, precise sensor modeling using GCPs (Ground Control Points) must be preceded. In this study, geometric models of UAV images were established through a precision sensor modeling algorithm developed in house. Then, a digital map by stereo plotting was produced to evaluate the possibility of large-scale digital map. For this study, images and GCPs were acquired for Ganseok-dong, Incheon and Yeouido, Seoul. As a result of precision sensor modeling accuracy analysis, high accuracy was confirmed within 3 pixels of the average error of the checkpoints and 4 pixels of the RMSE was confirmed for the two study regions. As a result of the mapping accuracy analysis, it satisfied the 1:1,000 mapping accuracy announced by the NGII (National Geographic information Institute). Therefore, the precision sensor modeling technology suggested the possibility of producing a 1:1,000 large-scale digital map by UAV images.

Genetic Algorithm-based Generative Design for Creative Ring Design (독창적 반지 설계를 위한 유전자 알고리즘 기반의 변환생성 디자인)

  • Kim, Ko Uh;Kang, Sol Ji;Jee, Sang Hyeon;Lee, Seung Bok;Lee, Keon Myung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.3
    • /
    • pp.233-238
    • /
    • 2014
  • Creativity is crucial in designing and producing attractive accessaries and daily supplies as well as art works. Generative design can be a paradigm to be used to obtain novel ideas or motifs for creative design works. This paper introduces a generative design method which comes up with unique ring models using genetic algorithm. It presents how the genetic algorithm works in terms of candidate solution coding, operators, and fitness evaluation function. The proposed method allows the customers to express their personal preference and later the preference to be reflected in fitness evaluation. In the final stage of the proposed method, several ring models are suggested for customers to choose on their own. The chosen ring models can be put into physical rings with the help of a 3D printer because the models are expressed in 3D geometric structures.

A Numerical and Experimental Study on Dynamics of A Towed Low-Tension Cable

  • Jung, D.H.;Park, H.I.;Koterayama, W.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.191-196
    • /
    • 2002
  • The paper presents a numerical and experimental investigation on dynamic behaviors of a towed low tension cable. In the numerical study, an implicit finite difference algorithm is employed for three-dimensional cable equations. Fluid and geometric non-linearity and bending stiffness are considered and solved by Newton-Raphson iteration. Block tri-diagonal matrix method is applied for the fast calculation of the huge size of matrices. In order to verify the numerical results and to see real physical phenomena, an experiment is carried out for a 6m cable in a deep and long towing tank. The cable is towed in two different ways; one is towed at a constant speed and the other is towed at a constant speed with top end horizontal oscillations. Cable tension and shear forces are measured at the top end. Numerical and experimental results are compared with good agreements in most cases but with some differences in a few cases. The differences are due to drag coefficients caused by vortex shedding. In the numerical modeling, non-uniform element length needs to be employed to cope with the sharp variation of tension and shear forces at near top end.

  • PDF

A Block-Based Volume Rendering Algorithm Using Shear-Warp factorization (쉬어-왑 분해를 이용한 블록 기반의 볼륨 렌더링 기법)

  • 권성민;김진국;박현욱;나종범
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.433-439
    • /
    • 2000
  • Volume rendering is a powerful tool for visualizing sampled scalar values from 3D data without modeling geometric primitives to the data. The volume rendering can describe the surface-detail of a complex object. Owing to this characteristic. volume rendering has been used to visualize medical data. The size of volume data is usually too big to handle in real time. Recently, various volume rendering algorithms have been proposed in order to reduce the rendering time. However, most of the proposed algorithms are not proper for fast rendering of large non-coded volume data. In this paper, we propose a block-based fast volume rendering algorithm using a shear-warp factorization for non-coded volume data. The algorithm performs volume rendering by using the organ segmentation data as well as block-based 3D volume data, and increases the rendering speed for large non-coded volume data. The proposed algorithm is evaluated by rendering 3D X-ray CT body images and MR head images.

  • PDF

A Study on the Computer Textile Pattern Design using Modeling Element of Natural Dyeing Works (천연염색 작품의 조형요소를 이용한 컴퓨터 직물 패턴디자인 연구)

  • Sul, Jung-Hwa
    • The Korean Fashion and Textile Research Journal
    • /
    • v.6 no.1
    • /
    • pp.17-22
    • /
    • 2004
  • The purpose of this study was to obtain the basic element of patterns, which is the motif, from the existing art works and use it to create and simulate a variety of patterns to show the practical use of the computer. Natural dyed works of geometric shapes like squares and 1/4 of circles, each dyed with a different natural dyes, were produced and motifs were extracted. Then using the 4D box in Adobe Photoshop v.6.0, the developing pattern change and simulation effects when using different patterns and different repetition settings were examined. Observations were made as the motifs were replicated. Different patterns like a diagonal line, a square and a circle appeared. In order to find out the effects according to the changes, the motifs from work's square portions, circle centre, and the composition of eight motifs were extracted and used. The repeated patterns according to the extracted motifs simply showed that in the case of just repeating and arranging, square patterns appeared. By replicating and arranging, the motif and the allophone were matched and patterns with regular lines were formed, like a twill, pointed twill line. By setting the direction to Y and X in the repetition methodes, a typical half-drop arrangement or a brick pattern arrangement were formed according to 1/4, 2/4, 3/4, 1/3, or 2/3 in changes. Also the steepness of the slope changes quickly or in turn slowly as the rhombus shape appears. However in the case of a composed motif, an ogee pattern appeared. Lastly, by 3-D mapping patterns like a slant line, pointed twill patterns, diamond patterns, and the repeat patterns of a motif with a circle and a line combined, and a circle motif, an optical illusion could be observed.

3-D Finite Element Modeling of Fiber Reinforced Rubber Composites using a Rubber Element (리바요소를 이용한 섬유강화 고무기저 복합재료의 3차원 유한요소 모델링기법)

  • Jeong, Se-Hwan;Song, Jung-Han;Kim, Jin-Woong;Kim, Jin-Young;Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1518-1525
    • /
    • 2006
  • Finite element analyses of structures made of the fiber reinforced composites require an adequate method to characterize the high anisotropic behavior induced by one or several layers of fiber cords with different spatial orientation embedded in a rubber matrix. This paper newly proposes a continuum based rebar element considering change of the orientation of the fiber during deformation of the composite. The mechanical behavior of the embedded fiber is modeled using two-node bar elements in order to consider the relative deformation and spatial orientation of the embedded fiber. For improvement of the analysis accuracy, the load-displacement curve of fiber is applied to the stiffness matrix of fiber. A finite element program is constructed based on the total Lagrangian formulation considering both geometric and material nonlinearity. Finite element analyses of the tensile test are carried out in order to evaluate the validity of the proposed method. Analysis results obtained with the proposed method provides realistic representation of the fiber reinforced rubber composite compared to results of other two models by the Halpin-Tsai equation and a rebar element in ABAQUS/Standard.

Sensitivity Analysis of Load Trunsfer of Jointed Concrete Pavements Using 3-D Finite Element Model (3차원 유한요소 모형를 이용한 줄눈 콘크리트포장 하중전달의 민감도 분석)

  • Sun, Ren-Juan;Lim, Jin-Sun;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.145-157
    • /
    • 2008
  • Load transfer efficiency (LTE) reflects the structural performance of doweled and undoweled joints of Jointed Concrete Pavement (JCP). A 3-dimensional (3-D) model of JCP was built using ABAQUS software in this study. Three concrete slabs were placed on bonded sublayers composed of a base and subgrade. Spring elements were used to connect the adjacent slabs at joints. Different spring constants were input to the model to simulate different joint stiffness of the concrete pavement. The LTE of the joint increased with an increase of the spring constant. The effects of material properties and geometric shape on the behavior of JCP were analyzed using different elastic modulus and thickness of the slab and base in the modeling. The results showed the elastic modulus of the subgrade affected the behavior of the slab and LTE more than that of the base and the thickness of the slab and base. The effects of a negative temperature gradient on the behavior of the slab and LTE were more than that of positive and zero temperature gradients. Joints with low stiffness were more sensitive to the temperature gradient of the slab.

  • PDF