• Title/Summary/Keyword: 316 Stainless Steel

Search Result 458, Processing Time 0.026 seconds

A Study on the Pd-Ni Alloy Hydrogen Membrane using the Porous Nickel Metal Support (다공성 Ni 금속 지지체를 사용한 Pd-Ni 합금 수소 분리막 연구)

  • Kim Dong-Won;Um Ki-Youn;Kim Sang-Ho;Park Jong-Su
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.5
    • /
    • pp.289-295
    • /
    • 2004
  • A dense palladium-nikel (Pd-Ni) alloy composite membrane has been fabricated on microporous nickel support mixed with submicron/micron nickel powder instead of mesoporous stainless steel support. Plasma treatment process is introduced as pre-treatment process instead of HCI activation. Pd-Ni alloy composite membrane prepared by electro plating was fairly a uniform and dense surface morphology. The membrane was characterized by permeation experiments with hydrogen and nitrogen gases at temperature 773 K and pressure 2.2 psi. The results showed that hydrogen ($H_2$) permeance was 27 ml/$\textrm{cm}^2$ㆍatmㆍmin and hydrogen/ nitrogen ($_H2$$N_2$) selectivity was 8 at 773 K.

Improvement of corrosion resistance and hardening the back ferrule surface by plasma treatment (Back ferrule 의 내식성과 체결시 기계적특성을 만족시키는 최적의 플라즈마 침질탄화공정조건의 확립)

  • Lee, In-Seop;Debnath, Sanket
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.179-180
    • /
    • 2012
  • Back ferrule is a circular ring shaped metallic object which is used for fastening, joining or reinforcement during the tube fitting as well as to prevent leakage. Therefore, during tube fitting the leading edge of the back ferrule should be sufficiently hard enough to prevent leakage. In our research, we concentrated the improvement of two major factors. Firstly, to improve the surface hardness of the back ferrule made by AISI 316 Stainless Steel. Secondly, the enhancement of corrosion resistance of back ferrule after plasma treatment. Initially, the corrosion resistance and hardness of the back ferrule (both commercial and without treated) was not good enough for tube fitting but after applying plasma treatment with suitable conditions on ferrule, we improved the corrosion resistance and hardness of the back ferrule dramatically.

  • PDF

A NEW BOOK: 'LIGHT-WATER REACTOR MATERIALS'

  • OLANDER DONALD R.;MOTTA ARTHUR T.
    • Nuclear Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.309-316
    • /
    • 2005
  • The contents of a new book currently in preparation are described. The dearth of books in the field of nuclear materials has left both students in nuclear materials classes and professionals in the same field without a resource for the broad fundamentals of this important sub-discipline of nuclear engineering. The new book is devoted entirely to materials problems in the core of light-water reactors, from the pressure vessel into the fuel. Key topics deal with the $UO_2$ fuel, Zircaloy cladding, stainless steel, and of course, water. The restriction to LWR materials does not mean a short monograph; the enormous quantity of experimental and theoretical work over the past 50 years on these materials presents a challenge of culling the most important features and explaining them in the simplest quantitative fashion. Moreover, LWRs will probably be the sole instrument of the return of nuclear energy in electric power production for the next decade or so. By that time, a new book will be needed.

Quantification of the Effect of Crack-Tip Constraint on Creep Crack Initiation Times (크리프 균열개시 시간에 대한 구속효과 영향의 정량화)

  • Lee, Seung-Ho;Jung, Hyun-Woo;Kim, Yun Jae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.2
    • /
    • pp.47-57
    • /
    • 2020
  • A new elastic-plastic-creep constraint parameter is proposed to quantify the effect of constraint on creep crack initiation times. It represents the difference between the transient elastic-plastic-creep crack-tip opening stress and the Riedel-Rice opening stress field in plane strain, which can be determined analytically. Application of the proposed parameter to a large set of creep crack growth test data using C(T) and SEN(B) specimens of Type 316H stainless steel at 550℃ shows that creep crack initiation times can be more accurately characterized by the C⁎-integral together with the proposed parameter.

A study on the Application Effect of Friction Stir Processing for Enhanced Pitting Corrosion Resistance of Stainless Steel Welds in Chloride Environment (염화물 환경에서 스테인리스강 용접부의 공식저항성 향상을 위한 마찰교반공정 적용효과에 관한 연구)

  • Jong Moon Ha;Deog Nam Shim;Seung Hyun Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.84-92
    • /
    • 2023
  • As temporary storage facilities for spent nuclear fuels in domestic nuclear power plants are expected to be saturated, external intermediate storage facilities would be required in the future. Spent nuclear fuels are stored in metal canisters and then placed in a dry environment within concrete or metal casing for operation. In the United States, the dry storage method for spent nuclear fuels has been operated for an extended period. Based on the corrosion experiences of dry storage canisters in chloride environments, numerous studies have been conducted to reduce corrosion in welds. With the construction of intermediate storage facilities in Korea for spent nuclear fuels expected near coastal areas adjacent to nuclear power plants, there is a need for research on the corrosion occurrence of welds and mitigation methods for canisters in chloride environments. In this paper, we measured and compared the residual stresses in the Heat-Affected Zones (HAZ) after electron beam welding (EBW) and gas tungsten arc welding (GTAW) processes for candidate materials such as 304L, 316L, and duplex stainless steel(DSS). We investigated the possibility of microstructure control through the application of surface modification processes using friction stir processing (FSP). Corrosion tests on each welded specimen revealed a higher corrosion rate in EBW welds compared to GTAW. Furthermore, it was confirmed that corrosion resistance improved due to phase refinement and redistribution of precipitates when FSP was applied.

Experimental Study on Wear Characteristics of Metallic Materials used in Oil Sands Plants (오일샌드 플랜트용 금속소재의 마모 특성에 대한 실험적 연구)

  • Won, Sung-Jae;Cho, Seung-Hyun;Kang, Dae-Kyung;Heo, Joong-Sik
    • Tribology and Lubricants
    • /
    • v.33 no.1
    • /
    • pp.31-35
    • /
    • 2017
  • Recently, international attention has been focused on the development of non-traditional energy resources such as shale gas and oil sands, due to the steep increase in the demand for natural resources. The materials incorporated in an oil gas plant module experience extreme environments, and are prone to various problem such as fracture, corrosion and abrasion due to low-temperature brittleness. In order to improve the plant life, it is necessary to perform characteristics study and performance evaluation of the materials. In particular, this paper explains the main set of materials which are most frequently used in oil sands plant project. In order to investigate wear characteristics, the authors carried out abrasive wear tests of TP 316, stainless steel and SS 400, structural rolled steel. For the analysis of the abrasive wear resistance of an oil sands plant, the authors carried out the test according to ASTM G 105 "Standard Test Method for Conducting Wet Sand/Rubber Wheel Abrasion Test" standard guidelines. The authors have derived the results from the data associated with the loss of mass with respect to wear rate. During the test, for a given wear length for 10,000 revolutions, the rotational speed and applied force of the rubber wheel were varied.

Numerical analysis of the cooling effects for the first wall of fusion reactor (핵 융합로 제1벽의 냉각성능에 관한 수치해석적 연구)

  • Jeong, I.S.;Hwang, Y.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.1
    • /
    • pp.18-30
    • /
    • 1999
  • A heat transfer analysis for the two-dimensional (2-D) steady state using finite difference method (FDM) is performed to predict the thermal behavior of the primary first-wall (FW) system of fusion reactor under various geometric and thermo-hydraulic conditions, such as the beryllium (Be) armor thickness, pitch of cooling tube, and coolant velocity. The FW consists of authentic steel (type 316 stainless steel solution annealed) for cooling tubes, Cu for cooling tubes embedding material, and Be for a protective armor, based on the International Thermonuclear Experiment Reactor (ITER) report. The present 2-D analysis, the control volume discretized with hybrid grid (rectangular grid and polar grid) and Gauss-Seidel iteration method are adapted to solve the governing equations. In the present study, geometric and thermo-hydraulic parameters are optimized with consideration of several limitations. Consequently, it is suggested that the adequate pitch of cooling tube is 22-32mm, the beryllium armor thickness is 10-12mm, and that the coolant velocity is 4.5m/s-6m/s for $100^{\circ}C$ of inlet coolant temperature. The cooling tube should locate near beryllium armor. But, it would be better for locating the center of Cu wall, considering problems of material and manufacturing. Also, 2-D analysis neglecting the axial temperature distribution of cooling tube is appropriate, regarding the discretization error in axial direction.

  • PDF

Dispersion Behaviors of Y2O3 Particles Into Aisi 316L Stainless Steel by Using Laser Cladding Technology (레이저 클래딩법을 이용한 AISI 316L 스테인리스강 내 Y2O3입자의 분산거동)

  • Park, Eun-Kwang;Hong, Sung-Mo;Park, Jin-Ju;Lee, Min-Ku;Rhee, Chang-Kyu;Seol, Kyeong-Won;Lee, Yang-Kyu
    • Journal of Powder Materials
    • /
    • v.20 no.4
    • /
    • pp.269-274
    • /
    • 2013
  • The present work investigated the dispersion behavior of $Y_2O_3$ particles into AISI 316L SS manufactured using laser cladding technology. The starting particles were produced by high energy ball milling in 10 min for prealloying, which has a trapping effect and homogeneous dispersion of $Y_2O_3$ particles, followed by laser cladding using $CO_2$ laser source. The phase and crystal structures of the cladded alloys were examined by XRD, and the cross section was characterized using SEM. The detailed microstructure was also studied through FE-TEM. The results clearly indicated that as the amount of $Y_2O_3$ increased, micro-sized defects consisted of coarse $Y_2O_3$ were increased. It was also revealed that homogeneously distributed spherical precipitates were amorphous silicon oxides containing yttrium. This study represents much to a new technology for the manufacture and maintenance of ODS alloys.

Study on the Electrode Characteristics for the Alkaline Water Electrolysis (알칼리 수전해용 전극에 관한 연구)

  • Choi, Ho-Sang;Yim, Doo-Soon;Rhyu, Cheol-Hwe;Kim, Jae-Chul;Hwang, Gab-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.2
    • /
    • pp.117-124
    • /
    • 2012
  • Alkaline electrolysis needs the electrode having a low overvoltage and good corrosion resistance in alkaline solution such as KOH and NaOH, for the oxygen and hydrogen production. The commercial materials such as SUS(stainless steel)-316, Ni and NiFe were evaluated for the electrode in alkaline electrolysis. The test solution for the alkaline electrolysis used 1~9M NaOH and 1~9M KOH. The voltage increased with an increase of current density in each solution. As for the 15wt.% (about 5M) NaOH, the voltage of the tested electrode under the current density of 1.8A/$cm^2$ showed the almost same value. The voltage over the current density of 1.8A/$cm^2$ deceased in the order: Ni${\fallingdotseq}$NiFe$cm^2$ showed the almost same value. The voltage over the current density of 1.8A/$cm^2$ deceased in the order: NiFe${\fallingdotseq}$SUS-316. From the results, it was estimated that NiFe and Ni was suitable as the electrode for the alkaline water electrolysis using NaOH and KOH electrolyte.

Characterization of Ni-Fe Alloy Electrodeposited Electrode for Alkaline Water Electrolysis (알칼라인 수전해용 Ni-Fe 합금 전착 전극의 특성)

  • AN, DA-SOL;BAE, KI-KWANG;PARK, CHU-SIK;KIM, CHANG-HEE;KANG, KOUNG-SOO;CHO, WON-CHUL;CHO, HYUN-SEOK;KIM, YOUNG-HO;JEONG, SEONG-UK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.636-641
    • /
    • 2016
  • Alkaline water electrolysis is commercial hydrogen production technology. It is possible to operate MW scale plant. Because It used non-precious metal for electrode. But It has relatively low current density and low efficiency. In this study, research objective is development of anode for alkaline water electrolysis with low cost, high corrosion resistance and high efficiency. Stainless steel 316L (SUS 316L) was selected for a substrate of electrode. To improve corrosion resistance of substrate, Nickel (Ni) layer was electrodeposited on SUS 316L. Ni-Fe alloy was electrodeposited on the passivated Ni layer as active catalyst for oxygen evolution reaction(OER). We optimized preparation condition of Ni-Fe alloy electrodeposition by changing current density, electrodeposition time and composition ratio of Ni-Fe electrodeposition bath. This electrodes were electrochemically evaluated by using Linear sweep voltammetry (LSV) and Cyclic voltammetry (CV). The Ni-Fe alloy (Ni : Fe = 1 : 1) showed best activity of OER. The optimized electrode decreased overpotential about 40% at $100mA/cm^2$ compared with Ni anode.