DOI QR코드

DOI QR Code

Dispersion Behaviors of Y2O3 Particles Into Aisi 316L Stainless Steel by Using Laser Cladding Technology

레이저 클래딩법을 이용한 AISI 316L 스테인리스강 내 Y2O3입자의 분산거동

  • Park, Eun-Kwang (Dept. of Metallurgical Engineering, Jeonbuk National University) ;
  • Hong, Sung-Mo (Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Park, Jin-Ju (Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Lee, Min-Ku (Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Rhee, Chang-Kyu (Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Seol, Kyeong-Won (Dept. of Metallurgical Engineering, Jeonbuk National University) ;
  • Lee, Yang-Kyu (Dept. of Management Information System, Seowon University)
  • 박은광 (전북대학교 금속공학과) ;
  • 홍성모 (한국원자력연구원 원자력재료개발부) ;
  • 박진주 (한국원자력연구원 원자력재료개발부) ;
  • 이민구 (한국원자력연구원 원자력재료개발부) ;
  • 이창규 (한국원자력연구원 원자력재료개발부) ;
  • 설경원 (전북대학교 금속공학과) ;
  • 이양규 (서원대학교 경영정보학과)
  • Received : 2013.08.12
  • Accepted : 2013.08.23
  • Published : 2013.08.28

Abstract

The present work investigated the dispersion behavior of $Y_2O_3$ particles into AISI 316L SS manufactured using laser cladding technology. The starting particles were produced by high energy ball milling in 10 min for prealloying, which has a trapping effect and homogeneous dispersion of $Y_2O_3$ particles, followed by laser cladding using $CO_2$ laser source. The phase and crystal structures of the cladded alloys were examined by XRD, and the cross section was characterized using SEM. The detailed microstructure was also studied through FE-TEM. The results clearly indicated that as the amount of $Y_2O_3$ increased, micro-sized defects consisted of coarse $Y_2O_3$ were increased. It was also revealed that homogeneously distributed spherical precipitates were amorphous silicon oxides containing yttrium. This study represents much to a new technology for the manufacture and maintenance of ODS alloys.

Keywords

References

  1. H. Gedda: 'Laser surface cladding a literature survey' Technical Report (2000).
  2. N. H. Kang, Y. G. Yoo: J. KWJS., 25 (2007) 1.
  3. Z. Chen, L. C. Lim and M. Qian: J. .Mater. Proc. Tech, 62 (1996) 321. https://doi.org/10.1016/S0924-0136(96)02428-4
  4. P. D. Denney, R. W. Dowry: Naval Engineers J., Nov (1993) 69.
  5. Y. S. Chang: Clean Tech., 13 (2007) 228.
  6. C. P. Paul, A. Jain, P. Ganesh, J. Negi and A. K. Nath: Optics and Lasers in Eng., 44 (2006) 1096-1109. https://doi.org/10.1016/j.optlaseng.2005.08.005
  7. G. Bi, B. Schurmann, A. Gasser, K. Wissenbach and R. Poprawe: Int. J. Machine Tools & Manufacture, 47 (2007) 555-561. https://doi.org/10.1016/j.ijmachtools.2006.05.010
  8. U. Oliveira, V. Ocelik: Surf. Coat. Technol., 197 (2005) 127. https://doi.org/10.1016/j.surfcoat.2004.06.029
  9. D. Vallauri, A. Atias, A. Chrysanthou: J. Euro Ceramic Soc., 28 (2008) 1697-1713. https://doi.org/10.1016/j.jeurceramsoc.2007.11.011
  10. B. S. Du, S. R. Paital, N. B. Dahotre: Scr. Mater., 59 (2008) 1147-1150. https://doi.org/10.1016/j.scriptamat.2008.07.035
  11. X. H. Wang, X. N. Pan, B. S. Du and S. Li: Trans. Nonferrous Met. Soc., 23 (2013) 1689. https://doi.org/10.1016/S1003-6326(13)62649-7
  12. K. L. Wang, Q. B. Zhang and M. L. Song: Appl. Surf. Sci., 174 (2001) 191. https://doi.org/10.1016/S0169-4332(01)00017-4
  13. S. M. Hong, J. J. Park, E. K. Park, M.K. Lee, C. K. Rhee, J. M. Kim, J. K. Lee: J. Kor. Powd. Met. Ins., 19 (2012) 219.
  14. D. Bergstrom, J. Powell and A. F. H. L Kaplan: Appl. Surf. Sci., 253 (2007) 5017-5028. https://doi.org/10.1016/j.apsusc.2006.11.018
  15. M. H. Kim, H. J. Ryu, S. S. Kim, C. H. Han, J. S. jang and O. J. Kwon: J. Kor. Powd. Met. Ins., 16 (2009) 122. https://doi.org/10.4150/KPMI.2009.16.2.122
  16. K. Ishizaki: Acta Matall. Mater., 38 (1990) 2059-2066. https://doi.org/10.1016/0956-7151(90)90073-P
  17. J. H. E. Jeffes: Encyclopedia of materiaks, Sci. Tech 2nd edition (2001) 2751-2753.

Cited by

  1. Manufacturing of Ni-Cr-B-Si + WC/12Co Composite Coating Layer Using Laser Cladding Process and its Mechanical Properties vol.24, pp.5, 2017, https://doi.org/10.4150/KPMI.2017.24.5.370
  2. Microstructure and Room Temperature Wear Properties of a Ni-Cr-B-Si-C Coating Layer Manufactured by the Laser Cladding Process vol.56, pp.6, 2018, https://doi.org/10.3365/KJMM.2018.56.6.423