• Title/Summary/Keyword: 30K protein

Search Result 3,892, Processing Time 0.035 seconds

Improvement of the Functionalities by Phosphorylation of Hoki(Johnius belengeri) Frame Protein Hydrolysates (민태(Johnius belengeri) frame 단백질 가수분해물의 인산화에 의한 기능성 개선)

  • Jeon, You-Jin;Lee, Byoung-Jo;Park, Pyo-Jam;Byun, Hee-Guk;Kim, Se-Kwon
    • Applied Biological Chemistry
    • /
    • v.42 no.2
    • /
    • pp.128-133
    • /
    • 1999
  • To enhance functional properties of 4 different hoki frame protein hydrolysates (30K, 10K, 5K and 1K hydrolysate) fractionated through a series of 30, 10, 5 and 1 kDa molecular weight cut-off membranes in order to decrease pore size, all hydrolysates were phosphorylated with sodium trimetaphosphate and altered phosphorylated 30K, 10K, 5K and 1K (P-30K, P-10K, P-5K and P-1K), respectively. The covalent attachment of anionic phosphate groups to polypeptide chains improved the functional properties, such as solubility, emulsifying properties and foaming properties, of hoki frame protein hydrolysates. Especially, P-30K hydrolysate with the highest molecular weight fraction possessed the most excellent functional properties among 4 different phosphorylated hydrolysates.

  • PDF

Melanogenic Effect of Eclipta Prostrata (L.) L. (한련초의 멜라닌합성 촉진 효과)

  • Cha, Su Bin;Park, In Hae;Hong, Seok Hun;Mun, Yeun Ja;Woo, Won Hong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.30 no.6
    • /
    • pp.432-438
    • /
    • 2016
  • This study was peformed to investigate the mechanism of ethanol extract of Eclipta Prostrata (L.) L. (EEP) induced melanogenesis. EEP enhanced tyrosinase activity and melanin contents of B16F10 cells. Moreover, EEP increased the protein expression of tyrosinase and tyrosinase-related protein 1 (TRP-1). But EEP did not increase the protein expression of tyrosinase-related protein 2 (TRP-2). These results suggest that melanogenesis-promoting effect of EEP was involved in regulation of tyrosinaase and TRP-1 protein, and EEP may be a potent pigmentation darkening agent in hypopigmentation condition.

Simple Purification of BA-RGD Protein Based on CaCl2/EDTA Treatment and Inclusion Body Washing (CaCl2/EDTA 및 비이온성 계면활성제 활용 Inclusion Body 정제법을 이용한 BA-RGD 단백질의 생산)

  • Song, Wooho;Byun, Chang Woo;Yoon, Minho;Eom, Ji Hoon;Choi, Yoo Seong
    • KSBB Journal
    • /
    • v.30 no.6
    • /
    • pp.291-295
    • /
    • 2015
  • The limited productivity of natural shell matrix proteins has hampered the investigation of their biochemical properties and practical applications, although biominerals in nature obtained by organic-inorganic assemblies have attractive mechanical and biological properties. Here, we prepared a vector for the expression of a fusion protein of a shell matrix protein from Pinctada fucata (named as GRP_BA) with the GRGDSP residue. The fusion protein of BA-RGD was simply produced in E. coli and purified through sequential steps including the treatment with $CaCl_2$ and EDTA solution for cell membrane washing, mechanical cell disruption and the application of non-ionic surfactant of Triton X-100 for BA-RGD inclusion body washing. The production yield was approximately 60 mg/L, any other protein band was not observed in SDS-PAGE and it was estimated that above 97% endotoxin was removed compared to the endotoxin level of whole cell. This study showed this simple and easy purification approach could be applied to the purification of BA-RGD fusion protein. It is expected that the protein could be utilized for the preparation of biominerals in practical aspects.

Functional Characterization of the Major Surface Protein of Treponema maltophilum in Human Gingival Fibroblasts

  • Lee, Sung-Hoon;Choi, Bong-Kyu
    • International Journal of Oral Biology
    • /
    • v.30 no.1
    • /
    • pp.31-37
    • /
    • 2005
  • Treponema maltophilum, a Group IV oral spirochete, is associated with periodontitis and endodontic infections. In this study we analyzed the functional role of the major surface protein of this organism (MspA) in human gingival fibroblasts (HGFs). The full-length gene encoding MspA was cloned and expressed in Escherichia coli by using the expression vector pQE-30. The recombinant protein (rMspA) was purified by affinity chromatography with nickel-nitrilotriacetic acid agarose and possible contamination of E. coli endotoxin in rMspA was removed by using polymyxin B-agarose. rMspA significantly induced the expression of pro inflammatory cytokines like IL-6 and IL-8 and intercellular adhesion molecule (ICAM)-1 in HGFs, when analyzed by reverse transcription-PCR, flow cytometry, and enzyme-linked immunosorbent assay. Our results indicate that MspA of T. maltophilum may play an important role in amplifying the local immune response by upregulating the expression of proinflammatory cytokines and ICAM-1.

Evaluation of Salt, Microbial Transglutaminase and Calcium Alginate on Protein Solubility and Gel Characteristics of Porcine Myofibrillar Protein

  • Hong, Geun-Pyo;Chin, Koo-Bok
    • Food Science of Animal Resources
    • /
    • v.30 no.5
    • /
    • pp.746-754
    • /
    • 2010
  • Response surface methodology was adopted to model and optimize the effects of microbial transglutaminase (TG) and calcium alginate (CA) systems of various ratios on the gelation characteristics of porcine myofibrillar protein (MP) at various salt levels. The CA system consisting of sodium alginate (SA), calcium carbonate (CC) and glucono-$\delta$-lactone (GdL) showed no remarkable changes in the salt-soluble fraction, and only minor effects on electrostatic interactions were observed. Increasing CA concentration caused acid-induced hydrophobic interactions in MPs, resulting in increased MP gel strength. The TG system, containing TG and sodium caseinate (SC), induced cold-set MP gelation by formation of covalent bonding. The main advantage of the combined system was a higher cooking yield when the MP gel was heated. These results indicated that 0.7% TG combined with 0.8% CA system can form a viscoelastic MP gel, regardless of salt levels.

Cellulose Utilization and Protein Productivity of Some Cellulolytic Fungal Co-cultures

  • Eyini, M.;Babitha, S.;Lee, Min-Woong
    • Mycobiology
    • /
    • v.30 no.3
    • /
    • pp.166-169
    • /
    • 2002
  • Protein productivity by the cellulolytic fungi, Trichoderma viride(MTCC 800), Chaetomium globosum and Aspergillus terreus was compared in co-culture and mixed culture fermentations of cashewnut bran. Co-cultures were more effective in substrate saccharification, which ranged between $85{\sim}88%$ compared to the $62{\sim}67%$ saccharification shown by the monocultures. Maximum saccharification was induced by T. viride and C. globosum co-culture resulting in the highest 34% release of reducing sugars. The maximum 16.4% biomass protein and the highest protein productivity(0.58%) were shown by T. viride and A. terreus co-culture. A. terreus performed better in co-culture in the presence of T. viride rather than with C. globosum. Among the cellulolytic enzymes, FPase(Filter Paper Cellulase) activity was significantly higher in all the co-cultures and in the mixed culture than in their respective monocultures. Mixed culture fermentation involving all the three fungi was not effective in increasing the per cent saccharification or the biomass protein content over the co-cultures.

Raman Detection of Protein Interfacial Conformations

  • Jang, Mi-Jin;Cho, Il-Young;Callahan, Patricia
    • BMB Reports
    • /
    • v.30 no.5
    • /
    • pp.352-355
    • /
    • 1997
  • The surface adsorbed protein conformations onto the vaccine adjuvants were observed with a Raman spectroscopy by using the maximum adsorption conditions described previously. The adsorbed state Raman vibrational spectra and subsequent spectral analysis display no conformational changes for BSA or IgG relative to their native species in solution.

  • PDF

Effect of Salinity on Survival, Growth and Physiological respone of Juvenile Chum Salmon (Oncorhynchus keta) (연어(Oncorhynchus keta) 치어의 생존, 성장 및 생리학적 반응에 미치는 염분의 영향)

  • Kyu Seok, Cho;Seok Woo, Jang;Yu Jin, Lee;Dong Yang, Kang;Han Seung, Kang
    • Journal of Marine Life Science
    • /
    • v.7 no.2
    • /
    • pp.180-186
    • /
    • 2022
  • This study was conducted to investigate the effects of different salinity on growth, survival and hematological parameters of juvenile chum salmon (Oncorhynchus keta). The fish were tested at salinity 0, 10, 20 and 30‰ for 30 days with three replicated groups. After the 30 days, the survival rate was 87.5% or more for 0, 10, 20‰ and significantly decreased to 75% at 30‰. Weight gain, specific growth rate, feed efficiency, daily feed intake, daily protein intake and protein efficiency ratio were the highest at 10‰. In the plasma components, the alanine aminotransferase (ALT) was significantly decreased at 10, 20 and 30‰ in compared with 0‰, whereas sodium (Na+) and chloride (Cl-) was significant increased and there was no significant change in the total protein (TP) and potassium (K+). In conclusion, the optimal salt concentration for the growth of juvenile chum salmon (11~33 g) was confirmed to be 10‰, but the association with the change in blood composition should be further studied.

Functional Properties of Proteolytic Enzyme-Modified Isolated Sesame Meal Protein (단백질 분해효소에 의한 참깨박 단백질의 기능성 변화)

  • Lee, Seon-Ho;Cho, Young-Je;Chun, Sung-Sook;Kim, Young-Hwal;Choi, Cheong
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.708-715
    • /
    • 1995
  • Effect of enzymatic modification with pepsin, papain and trypsin was studied on functional properties of isolated sesame meal protein hydrolysates. Solubility of protein hydrolysates distinctively increased from 2% to $53{\sim}94%$ at pH 4. Emulsifying properties showed marked increase 6 fold and 4.5 fold at degree of 10%, 20% hydrolysis by trypsin and degree of 10% hydrolysis by papain. The emulsion stability of the protein was unstable by heat treatment for 30 min. at $80^{\circ}C$. Foaming properties were also enhanced by enzymatic hydrolysis except at degree of 30% hydrolysis. Bulk density and water absorption of protein with trypsin and papain decreased about 0.1 g/ml and $0.3{\sim}0.7\;ml/g$, but oil absorption was increased about 1 ml/g.

  • PDF

Ultrafiltration and Separation Process Optimization of Hen Egg White Lysozyme as Natural Antimicrobial Enzyme (천연 항균 효소제 난백 lysozyme의 한외여과 조건 최적화)

  • Lee, Eun-Young;Woo, Gun-Jo
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.397-406
    • /
    • 1998
  • Hen egg white lysozyme (HEWL) is very valuable as a natural preservative in food processing due to its selective bactericidal activity. HEWL which traditionally isolated by crystallization or freeze drying was simply separated from 13 different hen egg white (HEW) proteins by a single-step ultrafiltration. Freeze dried HEW (0.25%, w/v) dissolved in a citrate-phosphate buffer (pH 4.6) was ultrafiltered with a PM30 membrane under various operating conditions, by changing concentration, temperature, transmembrane pressure $({\triangle}P_T)$, and stirring speed. Optimum separation conditions were decided when maximal flux was obtained. Under the optimum separation conditions, the effect of membrane material and fouling on flux as time passed as well as lysozyme concentration, protein concentration, specific activity (SA) in the permeate were measured. Best separation conditions of HEWL with PM30 membrane were sample concentration 0.25%, temperature $35^{\circ}C$, ${\Delta}P_T\;30\;psi$, and stirring speed 300 rpm. During the first 12 min, the flux of YM30 was higher, but at the steady-state it was lower than that of PM30. The SA of the PM30 permeate was over 2 times higher in spite of the lysozyme and protein concentration being lower than that of YM30 permeate. The flux of 5 times used PM30 decreased 30% compared to a new PM30, but both had the same tendency in flux decrease when time passed. Both of them reached a steady-state after 35 min and remained at 70% of the initial flux. In the PM30 permeate, the lysozyme concentration and SA were 110 units/mL and 2,821 units/mg protein, respectively. Therefore, PM30 membrane separation was very effective for separation of antimicrobial lysozyme.

  • PDF