Browse > Article
http://dx.doi.org/10.23005/ksmls.2022.7.2.180

Effect of Salinity on Survival, Growth and Physiological respone of Juvenile Chum Salmon (Oncorhynchus keta)  

Kyu Seok, Cho (Department of Inland Fisheries Research Institute)
Seok Woo, Jang (Department of Inland Fisheries Research Institute)
Yu Jin, Lee (Department of Inland Fisheries Research Institute)
Dong Yang, Kang (Department of Inland Fisheries Research Institute)
Han Seung, Kang (MS BioLab)
Publication Information
Journal of Marine Life Science / v.7, no.2, 2022 , pp. 180-186 More about this Journal
Abstract
This study was conducted to investigate the effects of different salinity on growth, survival and hematological parameters of juvenile chum salmon (Oncorhynchus keta). The fish were tested at salinity 0, 10, 20 and 30‰ for 30 days with three replicated groups. After the 30 days, the survival rate was 87.5% or more for 0, 10, 20‰ and significantly decreased to 75% at 30‰. Weight gain, specific growth rate, feed efficiency, daily feed intake, daily protein intake and protein efficiency ratio were the highest at 10‰. In the plasma components, the alanine aminotransferase (ALT) was significantly decreased at 10, 20 and 30‰ in compared with 0‰, whereas sodium (Na+) and chloride (Cl-) was significant increased and there was no significant change in the total protein (TP) and potassium (K+). In conclusion, the optimal salt concentration for the growth of juvenile chum salmon (11~33 g) was confirmed to be 10‰, but the association with the change in blood composition should be further studied.
Keywords
Oncorhynchus keta; Salinity; Growth; Hematological parameter;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Bervoets L, Verheyen R, Blust R. 1996. Uptake of zinc by the midge larvae Chironomus riparius at different salinities: Role of speciation acclimation, and calcium. Envrion Toxicol Chem 15: 1423-1428.    DOI
2 Blackburn J, Clarke WC. 1987. Revised procedure for the 24 hour seawater challenge test to measure seawater adaptability of juvenile salmonids. Can Tech Rep Fish Aquat Sci 1515: 1-35. 
3 Boeuf G, Payan P. 2001. How should salinity influence fish growth? Comp Biochem Physiol Part C 130: 411-423.    DOI
4 Chang YJ, Hur JW. 1999. Physiological responses of grey mullet, Mugil cephalus and Nile tilapia Oreochromis niloticus by rapid changes in salinity of rearing water. Fish Aquatic Sciences 32: 310-316. 
5 Clarke A. 1992. Global warming, ocean cooling. Nature 360: 17-18. 
6 Conover RJ, Wilson S, Harding GCH, Vass WP. 1995. Climate, copepods and cod: some thoughts on the long-range prospects for a sustainable northern cod fishery. Climate Research 5: 69-82. 
7 Conte FP, Wagner HH, Fessler J, Gnose C. 1966. Development of osmotic and ionic regulation in juvenile coho salmon Oncorhynchus kisutch. Comp Biochem Physiol 18: 1-15.    DOI
8 Duston J. 1994. Effect of salinity on survival and growth of Atlantic salmon (Salmo salar) parr and smolts, Aquaculture 121: 115-124.    DOI
9 Handeland SO, Stefansson SO. 2002. Effects of salinity acclimation on pre-smolt growth, smolting and post-smolt performance in off-season Atlantic salmon smolts (Salmo salar L.) Aquaculture 209: 125-137.    DOI
10 Iwata M, Hirano T, Hasegawa S. 1982. Behavior and plasma sodium regulation of chum salmon fry during transition into seawater. Aquaculture 28: 133-142.    DOI
11 Hur JW, Lee JY, Kim YH, Park IS, Chang YJ. 2006. Effects of salinity on hematological changes and survival of cultured olive flounder, Paralichthys olivaceus. J Kor Environ Biol 24: 380-386. 
12 Hussain M, Park HW, Farooq M, Jabran K, Lee DJ. 2013. Morphological and physiological basis of salt resistance in different rice genotypes. J Int Agri Biol 15: 113-118. 
13 Kaeriyama M, Urawa S, Suzuki T. 1992. Anadromous Sockeye Salmon (Oncorhynchus nerka) Derived from Nonanadromous Kokanees: Life History in Lake Toro. Scientific Reports of the Hokkaido Salmon Hatchery 46: 157-174. 
14 Kaneko N, Torao M, Koshino Y, Fujiwara M, Miyakoshi Y, Shimizu M. 2019. Evaluation of growth status using endocrine growth indices, insulin-like growth factor (IGF)-I and IGF-binding protein-1b, in out-migrating juvenile chum salmon. General and Comparative Endocrinology 274: 50-59.    DOI
15 Kang DY, Kang HW, Kim GH, Jo KC, Kim HC. 2007. Effect of cold shock on the physiological response of the cultured mullet, Mugil haematocheilus in winter. Korean Journal of Fisheries Society 40: 226-233. 
16 Kim JH, Park HJ, Hwang IK, Kim DH, Oh CW, Lee JS, Kang JC. 2016. Alterations of Hematological Parameters, Plasma Constituents and Antioxidant Responses in the Sablefish Anoplopoma fimbria Depending on Salinity. The Korean Society of Fisheries and Aquatic Science 49: 830-837.    DOI
17 Kim YS, Do YH, Min BH, Lim HK, Lee BK, Chang YJ. 2009. Physiological responses of starry flounder Platichthys stellatus during freshwater acclimation with different speeds in salinity change. Journal of Aquaculture 22: 28-33. 
18 Kojima I, Iwata M, Kurokawa T. 1993. Development and temporal decrease in seawater adaptability during early growth in chum salmon, Oncorhynchus keta. Aquaculture 118: 141-150.    DOI
19 Kreeger KY. 1995. Differences in the onset of salinity tolerance between juvenile chinook salmon from two coastal Oregon river systems. Can J Fish Aquat Sci 52: 623-630.    DOI
20 Kwon ON, Kim JK, Yoon MG, Kim DH, Hong KE. 2014. Marine prey selectivity of released juvenile chum salmon (Oncorhynchus keta) during arly marine migration in Korean waters. J Fisher Mar Sci Edu 26: 421-429. 
21 Lee BK, Huh MK. 2004. Effects of Varying Salinity on the Growth and Hematological Response of Juvenile Pufferfish, Takifugu obscurus. Korean Journal of Ichthyology 16: 254-260. 
22 Lim HK, Han HK, Lee JH, Jeong MH, Hur JW. 2005. Effects of Gradual Change of Salinity on Physiological Response in Hybrid Striped Bass (Morone chrysops×M. saxatilis). Korean Journal of Ichthyology 17: 43-48. 
23 Liu W, Zhi BJ, Zhan PR, Guan HH, Qin DL. 2013. Effects of salinity on haematological biochemistrical indices and liver tissue in juvenile Oncorhynchus keta. Ying Yong Sheng Tai Xue Bao 21: 2411-2417. 
24 Marshall WS. 2002. Na+, Cl-, Ca2+ and Zn2+ transport by fish gills: retrospective review and prospective synthesis. J Exp Zool 293: 264-283. 
25 Min BH. 2003. Physiological responses of black seabream, Acanthopagrus schlegeli to freshwater acclimation. Master Thesis, Pukyong National University, Busan, KOR. 55. 
26 Morita SH, Morita K, Sakano H. 2001. Growth of chum salmon (Oncorhynchus keta) correlated with sea-surface salinity in the North Pacific. Journal of Marine Science 58: 1335-1339. 
27 Pan CH, Chien YH, Hunter B. 2003. The resistance to ammonia stress of Penaeus monodon Fabricus juvenile fed diets supplemented with astaxanthin. Journal of Experimental Marine Biology and Ecology 297: 107-118.    DOI
28 Parry G. 1960. The development of salinity tolerance in the salmon, Salmo salar L. and some related species. J Exp Biol 37: 425-434.    DOI
29 Pandey S, Parvez S, Sayeed I, Haques R, Bin-Hafeez B, Raosuddin S. 2003. Biomarkers of oxidative stress: a comparative study of river Yammuna fish Wallagattu (Bi. & Schn.). Sci Total Environ 309: 105-115. 
30 Parry G. 1958. Size and osmoregulation in fishes. Nature Lond 181: 1218-1219.    DOI
31 Read JF, Gould WJ. 1992. Cooling and freshening of the subpolar North Atlantic Ocean since the 1960s. Nature 360: 55-57.    DOI
32 Robert GO. 1971. Effects of Salinity on the Survival and Growth of Pre-Smolt Coho Salmon (Oncorhynchus kisutch). Journal of the Fisheries Board of Canada 28: 343-349.    DOI
33 Shrimpton JM, Bernier NJ, Iwama GK, Randall DJ. 1994. Differences in measurements of smolt development between wild and hatchery reared juvenile coho salmon (Oncorhynchus kisutch) before and after saltwater exposure. Can J Fish Aqua Sci 51: 2170-2178.    DOI
34 Stephen D, McCormick Richard L. Saunders Arthur D, MacIntyre. 1989. The effect of salinity and ration level on growth rate and conversion efficiency of Atlantic salmon (Salmo salar) smolts. Aquaculture 82: 173-180.    DOI
35 Sutcliffe WH, Loucks RH, Drinkwater KF, Coote AR. 1983. Nutrient flux onto the Labrador Shelf from Hudson Strait and its biological consequences. Canadian Journal of Fisheries and Aquatic Sciences 40: 1692-1701.    DOI
36 Taniyama N, Kaneko N, Inatani Y, Miyakoshi Y, Shimizua M. 2016. Effects of seawater transfer and fasting on the endocrine and biochemical growth indices in juvenile chum salmon (Oncorhynchus keta). General and Comparative Endocrinology 236: 146-156.    DOI
37 Yeo IK, Choe MK. 2002. Studies on the Salinity Tolerance of Juvenile Rainbow Trout, Oncorhynchus mykiss. Korean J Ichthyol 14: 205-211. 
38 Timothy JB, Colin N, Caleb F, Jeff J, Britta TP. 2021. Chum Salmon Life-Cycle Model Description and Results for the Chehalis River Basin. NOAA Contract Report NMFS-NWFSC-CR-2021-02. 1-21. 
39 Wedemeyer GA, McLeay DJ. 1981. Methods for determining the tolerance of fishes to environmental stressors. In: Pickering, A.D. (Ed.), Stress and fish, Academic Press, London, U.K. pp 247-276. 
40 Weirich CR, Tomasso JR. 1991. Confinement and transport induced stress on red drum juveniles: effect of salinity. Prog Fish Cult 53: 146-149.    DOI
41 Zhang JL, Shi H. 2013. Physiological and molecular mechanisms of plant salt tolerance. Photo Res 115: 1-22.    DOI
42 Beckmann RP, Mizzen LE, Welch WJ. 1990. Interaction of HSP70 with newly synthesized proteins: implications for protein folding and assembly. Science 248: 850-854.    DOI
43 Anderson M, Buckwalter J, Cappiello T, Cline C, Dean J, DeCicco F, Greenwood S, Hauser B, Hayes B, Hill D, Inoue F, McCracken B, Rich C, Seaberg S, Wiedmer M. 2003. Juvenile salmonid and small fish identification aid. ADF&G Habitat & Restoration Division version 1.1, Compiled by Ed Weiss 
44 Bakke H, Bjerknes V, Vreeide A. 1991. Effects of rapid changes in salinity on the osmoregulation of postsmolt Atlantic salmon (Salmo salar). Aquaculture 96: 375-382.    DOI
45 Bailey J, Parsons J, Couturier CA. 1996. Salinity tolerance in the blue mussel, Mytilus edulis. Bull Aquacult Assoc Can 96: 74-76.