Browse > Article
http://dx.doi.org/10.5851/kosfa.2010.30.5.746

Evaluation of Salt, Microbial Transglutaminase and Calcium Alginate on Protein Solubility and Gel Characteristics of Porcine Myofibrillar Protein  

Hong, Geun-Pyo (Department of Animal Science and Biotechnology Research Institute, Chonnam National University)
Chin, Koo-Bok (Department of Animal Science and Biotechnology Research Institute, Chonnam National University)
Publication Information
Food Science of Animal Resources / v.30, no.5, 2010 , pp. 746-754 More about this Journal
Abstract
Response surface methodology was adopted to model and optimize the effects of microbial transglutaminase (TG) and calcium alginate (CA) systems of various ratios on the gelation characteristics of porcine myofibrillar protein (MP) at various salt levels. The CA system consisting of sodium alginate (SA), calcium carbonate (CC) and glucono-$\delta$-lactone (GdL) showed no remarkable changes in the salt-soluble fraction, and only minor effects on electrostatic interactions were observed. Increasing CA concentration caused acid-induced hydrophobic interactions in MPs, resulting in increased MP gel strength. The TG system, containing TG and sodium caseinate (SC), induced cold-set MP gelation by formation of covalent bonding. The main advantage of the combined system was a higher cooking yield when the MP gel was heated. These results indicated that 0.7% TG combined with 0.8% CA system can form a viscoelastic MP gel, regardless of salt levels.
Keywords
Microbial transglutaminase; calcium alginate; myofibrillar protein; gel characteristics;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Hong, G. P. and Chin, K. B. (2009) Optimisations of calcium alginate and microbial transglutaminase systems to form a cold-set myofibrillar protein gelation. Korean J. Food Sci. Ani. Resour. 5, 590-598.   과학기술학회마을   DOI   ScienceOn
2 Xiong, Y. L. (1993) A comparison of the rheological characteristics of different fractions of chicken myofibrillar proteins. J. Food Biochem. 16, 217-227.
3 Folk, J. E. (1980). Transglutaminase. Ann. Rev. Biochem. 49, 517-531.   DOI   ScienceOn
4 Nielsen, G. S., Petersen, B. R., and Moller, A. J. (1995) Impact of salt, phosphate and temperature on the effects of a transglutaminase (F XIIIa) on the texture of restructured meat. Meat Sci. 41, 293-99.   DOI   ScienceOn
5 Ramirez, J., Uresti, R., Tellez, S., and Vazquez, M. (2002) Using salt and microbial transglutaminase as binding agents in restructured fish products resembling hams. J. Food Sci. 67, 1778-1784.   DOI   ScienceOn
6 Cochran, W. G. and Cox, G. M. (1992) Experimental designs, 2nd edn. John Wiley and Sons Inc., NY, pp 335-375.
7 McClements, D. J. (2006) Non-covalent interactions between proteins and polysaccharides. Biotechnol. Adv. 24, 621-625.   DOI   ScienceOn
8 Chin, K. B., Go, M. Y., and Xiong, Y. L. (2009a) Konjac flour improved textural and water retention properties of transglutaminase-mediated, heat-induced porcine myofibrillar protein gel: Effect of salt level and transglutaminase incubation. Meat Sci. 81, 565-572.   DOI   ScienceOn
9 Hong, G. P. and Chin, K. B. (2010a) Effects of microbial transglutaminase and sodium alginate on cold-set gelation of porcine myofibrillar protein with various salt levels. Food Hydrocolloid. 24, 444-451.   DOI   ScienceOn
10 Lee, W. C., Yusof, S., Hamid, N. S. A., and Baharin, B. S. (2006) Optimizing conditions for enzymatic clarification of banana juice using response surface methodology (RSM). J. Food Eng. 73, 55-63.   DOI   ScienceOn
11 Mancini, M., Moresi, M., and Rancini, R. (1999) Mechanical properties of alginate gels: empirical characterization. J. Food Eng. 39, 369-378.   DOI   ScienceOn
12 Draget, K. I., Ostgaard, K., and Smidsrod, O. (1991) Homogeneous alginate gels: A technical approach. Carbohydr. Polym. 14, 159-178.
13 McClements, D. J. (1999) Food emulsions: Principles, practice, and techniques. CRC Press, Boca Raton, pp. 17-37.
14 Kutemeyer, C., Froeck, M., Werlein, H. D., and Watkinson, B. M. (2005) The influence of salts and temperature on enzymatic activity of microbial transglutaminase. Food Control. 16, 735-737.   DOI   ScienceOn
15 Kulmyrzaev, A., Chanamai, R., and McClements, D. J. (2000) Influence of pH and $CaCl_{2}$ on the stability of dilute whey protein stabilized emulsions. Food Res. Int. 33, 15-20.   DOI   ScienceOn
16 Kuraish, C., Sakamoto, J., Yamazaki, K., Susa, Y., Kuhara, C., and Soeda, T. (1997) Production of restructured meat using microbial transglutaminase without salt or cooking. J. Food Sci. 62, 488-490, 515.   DOI   ScienceOn
17 Hong, G. P. and Chin, K. B. (2010b) Evaluation of sodium alginate and glucono-$\delta$-lactone levels on the cold-set gelation of porcine myofibrillar protein at different salt concentrations. Meat Sci. 85, 201-209.   DOI   ScienceOn
18 Fernandez-Martin, F., Cofrades, S., Carballo, J., and Jimenez-Colmenero, F. (2002) Salt and phosphate effects on the gelling process of pressure/heat treated pork batters. Meat Sci.61, 15-23.   DOI   ScienceOn
19 Gornall, A. G., Bardawill, C. Y., and David, M. M. (1949) Determination of serum proteins by means of the biuret reaction. J. Biol. Chem. 177, 751-766.
20 Chin, K. B., Go, M. Y., and Xiong, Y. L. (2009b) Effect of soy protein substitution for sodium caseinate on the transglutaminase- induced cold and thermal gelation of myofibrillar protein. Food Res. Int. 42, 941-948.   DOI   ScienceOn
21 Sakamoto, H., Kumazawa, Y., and Motoki, M. (1994) Strength of protein gels prepared with microbial transglutaminase as related to reaction conditions. J. Food Sci. 59, 866-871.   DOI   ScienceOn
22 Means, W. J. and Schmidt, G. R. (1986) Algin/calcium gel as a raw and cooked binder in structured beef steaks. J. Food Sci. 51, 60-65.   DOI
23 Boles, J. A. and Shand P. J. (1998) Effect of comminution method and raw binder system in restructured beef. Meat Sci. 49, 297-307.   DOI   ScienceOn
24 Bryant, C. M. and McClements, D. J. (1998) Molecular basis of protein functionality with special consideration of cold-set gels derived from heat-denatured whey. Trend Food Sci. Technol. 9, 143-151.   DOI   ScienceOn
25 Ramirez-Suarez, J. C. and Xiong, Y. L. (2003) Effect of transglutaminase-induced cross-linking on gelation of myofibrillar/soy protein mixtures. Meat Sci. 65, 899-907.   DOI   ScienceOn
26 Park, J. W. (2000) Ingredient technology and formulation development. In: Surimi and surimi seafood. Park, J. W. (ed.) Marcel Dekker Inc., NY, pp. 343-391.
27 Neiser, S., Draget, K. I., and Smidsrod, O. (1999) Interactions in bovine serum albumin-calcium alginate gel systems. Food Hydrocolloid. 13, 445-458.   DOI   ScienceOn
28 Ngapo, T. M., Wilkinson, B. H. P., and Chong, R. (1996) 1,5-Glucono-a-lactone-induced gelation of myofibrillar protein at chilled temperature. Meat Sci. 42, 3-13.   DOI   ScienceOn
29 Means, W. J. and Schmidt, G. R. (1987) Restructuring fresh meat without the use of salt or phosphate. In: Advanced in meat research. Pearson, A. M. and Dutson, T. R. (eds.) Van Nostrand Reinhold, NY, Vol. 3, pp. 469-487.
30 Moreno, H. M., Carballo, J., and Borderias, A. J. (2008) Influence of alginate and microbial transglutaminase as binding ingredients on restructured fish muscle processed at low temperature. J. Sci. Food Agric. 88, 1529-1536.   DOI   ScienceOn