• Title/Summary/Keyword: 3-dimensional printing

Search Result 286, Processing Time 0.029 seconds

Fabrication of three-dimensional electrical patterns by swollen-off process: An evolution of the lift-off process

  • Mansouri, Mariam S.;An, Boo Hyun;Shibli, Hamda Al;Yassi, Hamad Al;Alkindi, Tawaddod Saif;Lee, Ji Sung;Kim, Young Keun;Ryu, Jong Eun;Choi, Daniel S.
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1235-1239
    • /
    • 2018
  • We present a novel process to fabricate three-dimensional (3D) metallic patterns from 3D printed polymeric structures utilizing different hygroscopic swelling behavior of two different polymeric materials. 3D patterns are printed with two different polymers as cube shape. The surface of the 3D printed polymeric structures is plated with nickel by an electroless plating method. The nickel patterns on the surface of the 3D printed cube shape structure are formed by removing sacrificial layers using the difference in the rate of hygroscopic swelling between two printing polymer materials. The hygroscopic behavior on the interfaced structure was modeled with COMSOL Multiphysics. The surface and electrical properties of the fabricated three-dimensional patterns were analyzed and characterized.

Novel Resectable Myocardial Model Using Hybrid Three-Dimensional Printing and Silicone Molding for Mock Myectomy for Apical Hypertrophic Cardiomyopathy

  • Wooil Kim;Minje Lim;You Joung Jang;Hyun Jung Koo;Joon-Won Kang;Sung-Ho Jung;Dong Hyun Yang
    • Korean Journal of Radiology
    • /
    • v.22 no.7
    • /
    • pp.1054-1065
    • /
    • 2021
  • Objective: We implemented a novel resectable myocardial model for mock myectomy using a hybrid method of three-dimensional (3D) printing and silicone molding for patients with apical hypertrophic cardiomyopathy (ApHCM). Materials and Methods: From January 2019 through May 2020, 3D models from three patients with ApHCM were generated using the end-diastolic cardiac CT phase image. After computer-aided designing of measures to prevent structural deformation during silicone injection into molding, 3D printing was performed to reproduce anatomic details and molds for the left ventricular (LV) myocardial mass. We compared the myocardial thickness of each cardiac segment and the LV myocardial mass and cavity volumes between the myocardial model images and cardiac CT images. The surgeon performed mock surgery, and we compared the volume and weight of the resected silicone and myocardium. Results: During the mock surgery, the surgeon could determine an ideal site for the incision and the optimal extent of myocardial resection. The mean differences in the measured myocardial thickness of the model (0.3, 1.0, 6.9, and 7.3 mm in the basal, midventricular, apical segments, and apex, respectively) and volume of the LV myocardial mass and chamber (36.9 mL and 14.8 mL, 2.9 mL and -9.4 mL, and 6.0 mL and -3.0 mL in basal, mid-ventricular and apical segments, respectively) were consistent with cardiac CT. The volume and weight of the resected silicone were similar to those of the resected myocardium (6 mL [6.2 g] of silicone and 5 mL [5.3 g] of the myocardium in patient 2; 12 mL [12.5 g] of silicone and 11.2 mL [11.8 g] of the myocardium in patient 3). Conclusion: Our 3D model created using hybrid 3D printing and silicone molding may be useful for determining the extent of surgery and planning surgery guided by a rehearsal platform for ApHCM.

Recent Activities of Solid Oxide Fuel Cell Research in the 3D Printing Processes (3D 프린팅 공정을 이용한 고체 산화물 연료전지 연구 동향)

  • MASAUD, ZUBAIR;KHAN, MUHAMMAD ZUBAIR;HUSSAIN, AMJAD;ISHFAQ, HAFIZ AHMAD;SONG, RAK-HYUN;LEE, SEUNG-BOK;JOH, DONG WOO;LIM, TAK-HYOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.1
    • /
    • pp.11-40
    • /
    • 2021
  • Solid oxide fuel cell (SOFC) has received significant attention recently because of its potential for the clean and efficient power generation. The current manufacturing processes for the SOFC components are somehow complex and expensive, therefore, new and innovative techniques are necessary to provide a great deal of cell performance and fabricability. Three-dimensional (3D) printing processes have the potential to provide a solution to all these problems. This study reviews the literature for manufacturing the SOFC components using 3D printing processes. The technical aspects for fabrication of SOFC components, 3D printing processes optimization and material characterizations are discussed. Comparison of the SOFC components fabricated by 3D printing to those manufactured by conventional ceramic processes is highlighted. Further advancements in the 3D printing of the SOFC components can be a step closer to the cost reduction and commercialization of this technology.

Corrective Surgery Using Virtual Surgical Simulation and a Three-Dimensional Printed Osteotomy Guide: A Case Report (가상 수술 시뮬레이션과 3차원 프린팅 절골술 가이드를 이용한 교정 수술: 증례 보고)

  • Gi Won Choi;Gi Jun Shin
    • Journal of Korean Foot and Ankle Society
    • /
    • v.27 no.3
    • /
    • pp.112-116
    • /
    • 2023
  • A 74-year-old female patient, who underwent surgery for a left distal tibiofibular fracture 40 years earlier, visited the hospital with an ankle varus deformity due to malunion. The patient complained of discomfort while walking due to the ankle and hindfoot varus deformity but did not complain of ankle pain. Therefore, correction using supramalleolar osteotomy was planned, and through virtual surgical simulation, it was predicted that a correction angle of 24° and an osteotomy gap open of 12 mm would be necessary. An osteotomy guide and an osteotomy gap block were made using three-dimensional (3D) printing to perform the osteotomy and correct the deformity according to the predicted goal. One year after surgery, it was observed that the ankle varus was corrected according to the surgical simulation, and the patient was able to walk comfortably. Thus, for correction of deformity, virtual surgical simulation and a 3D-printed osteotomy guide can be used to predict the target value for correction. This is useful for increasing the accuracy of correction of the deformity.

3D Printing of Biocompatible PM-materials

  • Dourandish, Mahdi;Godlinski, Dirk;Simchi, Abdolreza
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.252-253
    • /
    • 2006
  • The fabrication of complex-shaped parts out of Co-Cr-Mo alloy and 316L stainless steel by three-dimensional printing (3DP) was studied using two grades of each alloy with average particle size of 20 and $75\;{\mu}m$, respectively. To produce sound specimens, the proper 3DP processing parameters were determined. The sintering behavior of the powders was characterized by dilatometric analysis and by batch sintering in argon atmosphere at $1280^{\circ}$ for 2h. The 3DP process has successfully produced complex-shaped biomedical parts with total porosity of 12-25% and homogenous pore structure, which could be suitable for tissue growth into the pores.

  • PDF

Three-Dimensional Nanofabrication with Nanotransfer Printing and Atomic Layer Deposition

  • Kim, Su-Hwan;Han, Gyu-Seok;Han, Gi-Bok;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.87-87
    • /
    • 2010
  • We report a new patterning technique of inorganic materials by using thin-film transfer printing (TFTP) with atomic layer deposition. This method consists of the atomic layer deposition (ALD) of inorganic thin film and a nanotransfer printing (nTP) that is based on a water-mediated transfer process. In the TFTP method, the Al2O3 ALD growth occurs on FTS-coated PDMS stamp without specific chemical species, such as hydroxyl group. The CF3-terminated alkylsiloxane monolayer, which is coated on PDMS stamp, provides a weak adhesion between the deposited Al2O3 and stamp, and promotes the easy and complete release of Al2O3 film from the stamp. And also, the water layer serves as an adhesion layer to provide good conformal contact and form strong covalent bonding between the Al2O3 layer and Si substrate. Thus, the TFTP technique is potentially useful for making nanochannels of various inorganic materials.

  • PDF

Preparatory Research prior to the Development of Consumer-Tailored 3D Printing Service Platform (소비자 맞춤형 삼차원 프린팅 서비스 플랫폼 개발을 위한 탐색)

  • Lee, Guk-Hee;Choi, Hye-Kyong
    • Science of Emotion and Sensibility
    • /
    • v.20 no.1
    • /
    • pp.3-16
    • /
    • 2017
  • With the development and proliferation of three-dimensional(3D) printers, consumers in modern society can now print products of what they want three-dimensionally at home. However, consumers themselves would have to produce digital design maps that are compatible with 3D printers and to set up the optimum printing quality and temperature, as well as to pay for maintenance and repair of 3D printers and to respond to any possible lawsuits related to intellectual property right about designs in order to make possible consumer-tailored manufacturing through 3D printing. However, in reality, since it is very difficult for consumers to respond to these issues, it is necessary to develop services that perform 3D printing on behalf of consumers in the desired direction. Motivated by this objective, this study investigated user experiences on Shapeways(www.shapeways.com), which is a global online 3D printing product and sales companies, from many viewpoints in order to obtain insight into 3D printing services and modes which were preferred by consumers. The study result showed that quantitative evaluations on usability, search process, price adequacy, re-visit intention, diversity of design, and satisfaction of design was scored low overall. Furthermore, this study acquired insight about consumer-tailored 3D printing services through constructive suggestions on multi-language support, openness of manufacturing process, simultaneous operation of online and offline sites, design-oriented consumer-tailored manufacturing service, services that ensure delivery safety and product durability, and surface finishing services. This study is expected to provide a wide range of opinions not only on 3D printing service platform development but also on related industry and research.

Ceramic Direct Rapid Tooling with FDM 3D Printing Technology (FDM 3D Printing 기술을 응용한 직접식 세라믹 쾌속툴링)

  • Shin, Geun-Sik;Kweon, Hyun-Kyu;Kang, Yong-Goo;Oh, Won-Taek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.7
    • /
    • pp.83-89
    • /
    • 2019
  • In the conventional casting and forging method, there is a disadvantage that a mold is an essential addition, and a production cost is increased when a small quantity is produced. In order to overcome this disadvantage, a metal 3D printing production method capable of directly forming a shape without a mold frame is mainly used. In particular, overseas research has been conducted on various materials, one of which is a metal printer. Similarly, domestic companies are also concentrating on the metal printer market. However, In this case of the conventional metal 3D printing method, it is difficult to meet the needs of the industry because of the high cost of materials, equipment and maintenance for product strength and production. To compensate for these weaknesses, printers have been developed that can be manufactured using sand mold, but they are not accessible to the printer company and are expensive to machine. Therefore, it is necessary to supply three-dimensional casting printers capable of metal molding by producing molds instead of conventional metal 3D printing methods. In this study, we intend to reduce the unit price by replacing the printing method used in the sand casting printer with the FDM method. In addition, Ag paste is used to design the output conditions and enable ceramic printing.

The role of internal architecture in producing high-strength 3D printed cobalt-chromium objects

  • Abdullah Jasim Mohammed;Ahmed Asim Al-Ali
    • The Journal of Advanced Prosthodontics
    • /
    • v.16 no.2
    • /
    • pp.91-104
    • /
    • 2024
  • PURPOSE. The objectives of the current study were to estimate the influence of self-reinforced hollow structures with a graded density on the dimensional accuracy, weight, and mechanical properties of Co-Cr objects printed with the direct metal laser sintering (DMLS) technique. MATERIALS AND METHODS. Sixty-five dog-bone samples were manufactured to evaluate the dimensional accuracy of printing, weight, and tensile properties of DMLS printed Co-Cr. They were divided into Group 1 (control) (n = 5), Group 2, 3, and 4 with incorporated hollow structures based on (spherical, elliptical, and diamond) shapes; they were subdivided into subgroups (n = 5) according to the volumetric reduction (10%, 15%, 20% and 25%). Radiographic imaging and microscopic analysis of the fractographs were conducted to validate the created geometries; the dimensional accuracy, weight, yield tensile strength, and modulus of elasticity were calculated. The data were estimated by one-way ANOVA and Duncan's tests at P < .05. RESULTS. The accuracy test showed an insignificant difference in the x, y, z directions in all printed groups. The weight was significantly reduced proportionally to the reduced volume fraction. The yield strength and elastic modulus of the control group and Group 2 at 10% volume reduction were comparable and significantly higher than the other subgroups. CONCLUSION. The printing accuracy was not affected by the presence or type of the hollow geometry. The weight of Group 2 at 10% reduction was significantly lower than that of the control group. The yield strength and elastic modulus of the Group 2 at a 10% reduction showed means equivalent to the compact objects and were significantly higher than other subgroups.

Comparative analysis of strain according to two wavelengths of light source and constant temperature bath deposition in ultraviolet-curing resin for dental three-dimensional printing (치과 3D 프린팅용 자외선 경화 레진에 광원의 두 가지 파장에 따른 경화 및 항온수조 침적에 따른 변형률의 비교 분석)

  • Kim, Dong-Yeon;Lee, Gwang-Young;Kang, Hoo-Won;Yang, Cheon-Seung
    • Journal of Technologic Dentistry
    • /
    • v.42 no.3
    • /
    • pp.208-212
    • /
    • 2020
  • Purpose: This study aimed to analyze the shrinkage and expansion strain of ultraviolet (UV)-cured resin according to the wavelength of the light source and compare the shrinkage and expansion. Methods: We prepared the mold with according to the ISO 4049 specimen. The size of the circle in the mold was prepared with a height of 6.02 mm and a diameter of 4 mm. UV-curable resin for three-dimensional (3D) printing was injected into the circular mold. The control group was irradiated with a wavelength of 400~405 nm using UV-curing equipment (400 group), and the experimental group was irradiated with a wavelength of 460~465 nm (460 group). Both groups were produced ten specimens. The produced specimen was first measured with a digital micrometer. After the first measurement, the specimen was immersed in a constant temperature water bath for 15 days, after which the second measurement was performed, and the third measurement was taken after 30 days. The measured values were analyzed using the independent sample t-test (α=0.05). Results: In the non-immersion water tank, the contraction was 0.9% in the 400 group and 1.3% in the 460 group. In the constant temperature bath, the expansion was high at -0.4% in the 400 group for 15 days, and the smallest expansion was -0.03% for the 400 group for 30 days. There were significant differences between the two groups (p<0.05). Conclusion: The 400 group had a lower UV resin specimen strain than the 460 group. Therefore, it is recommended to use the wavelength required by the UV-curing resin.