Browse > Article
http://dx.doi.org/10.7316/KHNES.2021.32.1.11

Recent Activities of Solid Oxide Fuel Cell Research in the 3D Printing Processes  

MASAUD, ZUBAIR (Fuel Cell Laboratory, Korea Institute of Energy Research)
KHAN, MUHAMMAD ZUBAIR (Department of Materials Science and Engineering, Ghulam Ishaq Khan (GIK) Institute of Engineering Sciences and Technology)
HUSSAIN, AMJAD (Fuel Cell Laboratory, Korea Institute of Energy Research)
ISHFAQ, HAFIZ AHMAD (Fuel Cell Laboratory, Korea Institute of Energy Research)
SONG, RAK-HYUN (Fuel Cell Laboratory, Korea Institute of Energy Research)
LEE, SEUNG-BOK (Fuel Cell Laboratory, Korea Institute of Energy Research)
JOH, DONG WOO (Fuel Cell Laboratory, Korea Institute of Energy Research)
LIM, TAK-HYOUNG (Fuel Cell Laboratory, Korea Institute of Energy Research)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.32, no.1, 2021 , pp. 11-40 More about this Journal
Abstract
Solid oxide fuel cell (SOFC) has received significant attention recently because of its potential for the clean and efficient power generation. The current manufacturing processes for the SOFC components are somehow complex and expensive, therefore, new and innovative techniques are necessary to provide a great deal of cell performance and fabricability. Three-dimensional (3D) printing processes have the potential to provide a solution to all these problems. This study reviews the literature for manufacturing the SOFC components using 3D printing processes. The technical aspects for fabrication of SOFC components, 3D printing processes optimization and material characterizations are discussed. Comparison of the SOFC components fabricated by 3D printing to those manufactured by conventional ceramic processes is highlighted. Further advancements in the 3D printing of the SOFC components can be a step closer to the cost reduction and commercialization of this technology.
Keywords
Solid oxide fuel cell; 3D printing; Ceramics; Manufacturing processes;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. O. Stoermer, J. L. M. Rupp, and L. J. Gauckler, "Spray pyrolysis of electrolyte interlayers for vacuum plasma-sprayed SOFC", Solid State Ionics, Vol. 177, No. 19-25 SPEC. ISS., pp. 2075-2079, 2006, doi: https://doi.org/10.1016/j.ssi.2006.06.033.   DOI
2 S. Suda, M. Itagaki, E. Node, S. Takahashi, M. Kawano, H. Yoshida, and T. Inagaki, "Preparation of SOFC anode composites by spray pyrolysis", J. Eur. Ceram. Soc., Vol. 26, No. 4-5, 2006, pp. 593-597, doi: https://doi.org/10.1016/j.jeurceramsoc.2005.07.038.   DOI
3 P. Gannon, M. Deibert, P. White, R. Smith, H. Chen, W. Priyantha, J. Lucas, and V. Gorokhovsky, "Advanced PVD protective coatings for SOFC interconnects", Int. J. Hydrogen Energy, Vol. 33, No. 14, 2008, pp. 3991-4000, doi: https://doi.org/10.1016/j.ijhydene.2007.12.009.   DOI
4 V. I. Gorokhovsky, P. E. Gannon, M. C. Deibert, R. J. Smith, A. Kayani, M. Kopczyk, D. VanVorous, Zhenguo Yang, J. W. Stevenson, S. Visco, C. Jacobson, H. Kurokawa, and S. W. Sofie, "Deposition and evaluation of protective pvd coatings on ferritic stainless steel SOFC interconnects", J. Electrochem. Soc., Vol. 153, No. 10, 2006, pp. A1886, doi: https://doi.org/10.1149/1.2266244.   DOI
5 H. Y. Jung, K. S. Hong, H. Kim, J. K. Park, J. W. Son, J. Kim, H. W. Lee, and J. H. Lee, "Characterization of thin-film YSZ deposited via EB-PVD technique in anode-supported SOFCs", J. Electrochem. Soc., Vol. 153, No. 6, 2006, pp. A961, doi: https://doi.org/10.1149/1.2186209.   DOI
6 Y. Liu, S. Zha, and M. Liu, "Novel nanostructured electrodes for solid oxide fuel cells fabricated by combustion chemical vapor deposition (CVD)", Adv. Mater., Vol. 16, No. 3, 2004, pp. 256-260, doi: https://doi.org/10.1002/adma.200305767.   DOI
7 X. Ge, X. Huang, Y. Zhang, Z. Lu, J. Xu, K. Chen, D. Dong, Z. Liu, J. Miao, and W. Su, "Screen-printed thin YSZ films used as electrolytes for solid oxide fuel cells", J. Power Sources, Vol. 159, No. 2, 2006, pp. 1048-1050, doi: https://doi.org/10.1016/j.jpowsour.2005.12.013.   DOI
8 Y. Liu, W. Rauch, S. Zha, and M. Liu, "Fabrication of Sm0.5Sr0.5CoO3-δ-Sm0.1Ce0.9O3-δ; cathodes for solid oxide fuel cells using combustion CVD", Solid State Ionics, Vol. 166, No. 3-4, 2004, pp. 261-268, doi: https://doi.org/10.1016/j.ssi.2003.12.001.   DOI
9 T. Takeyama, N. Takahashi, T. Nakamura, and S. Itoh, "δ-Bi2O3 thin films deposited on dense YSZ substrates by CVD method under atmospheric pressure for intermediate temperature SOFC applications", Surf. Coatings Technol., Vol. 200, No. 16-17, 2006, pp. 4797-4801, doi: https://doi.org/10.1016/j.surfcoat.2005.04.047.   DOI
10 G. Meng, H. Song, C. Xia, X. Liu, and D. Peng, "Novel CVD techniques for Micro- and IT-SOFC fabrication", Fuel Cells, Vol. 4, No. 1-2, 2004, pp. 48-55, doi: https://doi.org/10.1002/fuce.200400006.   DOI
11 Y. Zhang, J. Liu, X. Huang, Z. Lu, and W. Su, "Low temperature solid oxide fuel cell with Ba0.5Sr0.5Co0.8Fe0.2O3 cathode prepared by screen printing", Solid State Ionics, Vol. 179, 2008, pp. 250-255, doi: https://doi.org/10.1016/j.ssi.2008.02.008.   DOI
12 P. Ried, C. Lorenz, A. Bronstrup, T. Graule, N. H. Menzler, W. Sitte, and P Holtappels, "Processing of YSZ screen printing pastes and the characterization of the electrolyte layers for anode supported SOFC", J. Eur. Ceram. Soc., Vol. 28, No. 9, 2008, pp. 1801-1808, doi: https://doi.org/10.1016/j.jeurceramsoc.2007.11.018.   DOI
13 C. Brahim, A. Ringuede, E. Gourba, M. Cassir, A. Billard, and P. Briois, "Electrical properties of thin bilayered YSZ/GDC SOFC electrolyte elaborated by sputtering", J. Power Sources, Vol. 156, No. 1, 2006, pp. 45-49, doi: https://doi.org/10.1016/j.jpowsour.2005.08.017.   DOI
14 T. Y. Hill, T. L. Reitz, M. A. Rottmayer, and H. Huang, "Controlling inkjet fluid kinematics to achieve SOFC cathode micropatterns", ECS J. Solid State Sci. Technol., Vol. 4, No. 4, 2015, pp. P3015-P3019, doi: https://doi.org/10.1149/2.0031504jss.   DOI
15 G . J. La O, J. H ertz, H . Tuller, and Y. Shao-Horn, "Microstructural features of RF-sputtered SOFC anode and electrolyte materials", J. Electroceramics, Vol. 13, No. 1-3, 2004, pp. 691-695, doi: https://doi.org/10.1007/ s10832-004-5177-9.   DOI
16 K. Hayashi, O. Yamamoto, Y. Nishigaki, and H. Minoura, "Sputtered La0.5Sr0.5MnO3-yttria stabilized zirconia composite film electrodes for SOFC", Solid State Ionics, Vol. 98, No. 1-2, 1997, pp. 49-55, doi: https://doi.org/10.1016/S0167-2738(97)00098-2.   DOI
17 C. L. Chu, J. Y. Wang, and S. Lee, "Effects of La0.67Sr0.33MnO3 protective coating on SOFC interconnect by plasma-sputtering", Int. J. Hydrogen Energy, Vol. 33, No. 10, 2008, pp. 2536-2546, doi: https://doi.org/10.1016/j.ijhydene.2008.02.061.   DOI
18 T. H. Lee, K. Y. Liu, F. E. Wiria, and P. C. Su, "Inkjet-printed silver and samarium-doped ceria nanocomposite cathode for low temperature solid oxide fuel cells", EEE/SICE International Symposium on System Integration (SII), 2017, pp. 83-88, doi: https://doi.org/10.1109/SII.2017.8279193.   DOI
19 C. Li, H. Chen, H. Shi, M. O. Tade, and Z. Shao, "Green fabrication of composite cathode with attractive performance for solid oxide fuel cells through facile inkjet printing", J. Power Sources, Vol. 273, 2015, pp. 465-471, doi: https://doi.org/10.1016/j.jpowsour.2014.09.143.   DOI
20 C. C. Yu, J. D. Baek, C. H. Su, L. Fan, J. Wei, Y. C. Liao, and P. C. Su, "Inkjet-printed porous silver thin film as a cathode for a low-temperature solid oxide fuel cell", ACS Appl. Mater. Interfaces, Vol. 8, No. 16, 2016, pp. 10343-10349, doi: https://doi.org/10.1021/acsami.6b01943.   DOI
21 T. Setoguchi, M . Sawano, K. Eguchi, and H . Arai, "Application of the stabilized zirconia thin film prepared by spray pyrolysis method to SOFC", Solid State Ionics, Vol. 40-41, 1990, pp. 502-505, doi: https://doi.org/10.1016/0167-2738(90)90390-D.   DOI
22 N. Yashiro, T. Usui, and K. Kikuta, "Application of a thin intermediate cathode layer prepared by inkjet printing for SOFCs", J. Eur. Ceram. Soc., Vol. 30, No. 10, 2010, pp. 2093-2098, doi: https://doi.org/10.1016/j.jeurceramsoc.2010.04.012.   DOI
23 N. Orlovskaya, A. Coratolo, C. Johnson, and R. Gemmen, "Structural characterization of lanthanum chromite perovskite coating deposited by magnetron sputtering on an iron-based chromium-containing alloy as a promising interconnect ma terial for SOFCs", J. Am. Ceram. Soc., Vol. 87, 2005, pp. 1981-1987, doi: https://doi.org/10.1111/j.1151-2916.2004.tb06350.x.   DOI
24 D. Perednis and L. J. Gauckler, "Solid oxide fuel cells with electrolytes prepared via spray pyrolysis", Solid State Ionics, Vol. 166, No. 3-4, 2004, pp. 229-239, doi: https://doi.org/10.1016/j.ssi.2003.11.011.   DOI
25 D. Beckel, U. P. Muecke, T. Gyger, G. Florey, A. Infortuna, and L. J. Gauckler, "Electrochemical performance of LSCF based thin film cathodes prepared by spray pyrolysis", Solid State Ionics, Vol. 178, No. 5-6, 2007, pp. 407-415, doi: https://doi.org/10.1016/j.ssi.2007.01.019.   DOI
26 C. Li, H. Shi, R. Ran, C. Su, and Z. Shao, "Thermal inkjet printing of thin-film electrolytes and buffering layers for solid oxide fuel cells with improved performance", Int. J. Hydrogen Energy, Vol. 38, No. 22, 2013, pp. 9310-9319, doi: https://doi.org/10.1016/j.ijhydene.2013.05.025.   DOI
27 G. Y. Meng, H. Z. Song, H. B. Wang, C. R. Xia, and D. K. Peng, "Progress in ion-transport inorganic membranes by novel chemical vapor deposition (CVD) techniques", Thin Solid Films, Vol. 409, No. 1, 2002, pp. 105-111, doi: https://doi.org/10.1016/S0040-6090(02)00111-6.   DOI
28 L. Jia, Z. Lu, X. Huang, Z. Liu, K. Chen, X. Sha, G. Li, and W. Su, "Preparation of YSZ film by EPD and its application in SOFCs", J. Alloys Compd., Vol. 424, No. 1-2, 2006, pp. 299-303, doi: https://doi.org/10.1016/j.jallcom.2005.12.065.   DOI
29 M. Matsuda, T. Hosomi, K. Murata, T. Fukui, and M. Miyake, "Direct EPD of YSZ electrolyte film onto porous NiO-YSZ composite substrate for reduced-temperature operating anode-supported SOFC", Electrochem . Solid-State Lett., Vol. 8, No. 1, 2005, pp. A 8, doi: https://doi.org/10.1149/1.1828342.   DOI
30 K. Yamaji, H. Kishimoto, Y. Xiong, T. Horita, N. Sakai, and H. Yokokawa, "Performance of anode-supported SOFCs fabricated with EPD techniques", Solid State Ionics, Vol. 175, No. 1-4, 2004, pp. 165-169, doi: https://doi.org/10.1016/j.ssi.2004.09.032.   DOI
31 M. Sukeshini A., F. Meisenkothen, P. Gardner, and T. L. Reitz, "Aerosol Jet® Printing of functionally graded SOFC anode interlayer and microstructural investigation by low voltage scanning electron microscopy", J. Power Sources, 2013, Vol. 224, pp. 295-303, doi: https://doi.org/10.1016/j.jpowsour.2012.09.094.   DOI
32 M. R. Weimar, L. A. Chick, D. W. Gotthold, and G. A. Whyatt, "Cost study for manufacturing of solid oxide fuel cell power systems", 2013, doi: https://doi.org/10.2172/1126362.   DOI
33 H. Wu, W. Liu, R. He, Z. Wu, Q. Jiang, X. Song, Y. Chen, L. Cheng, and S. Wu, "Fabrication of dense zirconia-toughened alumina ceramics through a stereolithography-based additive manufacturing", Ceram. Int., Vol. 43, No. 1, 2017, pp. 968-972, doi: https://doi.org/10.1016/j.ceramint.2016.10.027.   DOI
34 A. Casanova, "A consortium approach to commercialized Westinghouse solid oxide fuel cell technology", J. Power Sources, Vol. 71, No. 1-2, 1998, pp. 65-70, doi: https://doi.org/10.1016/S0378-7753(97)02757-2.   DOI
35 K. Horiuchi, "Current status of national SOFC projects in Japan", ECS Transactions, Vol. 57, No. 1, pp. 3-10, 2013, https://iopscience.iop.org/article/10.1149/05701.0003ecst.   DOI
36 M. Kadowaki, "Current status of national SOFC projects in Japan", ECS Transactions, Vol. 68, No. 1, pp. 15-22, 2015, https://iopscience.iop.org/article/10.1149/06801.0015ecst.   DOI
37 X. Yan and P. Gu, "A review of rapid prototyping technologies and systems", Computer-Aided Design, Vol. 28, No. 4, 1996, pp. 307-318, doi: https://doi.org/10.1016/0010-4485(95)00035-6.   DOI
38 B. Dhariwala, E. Hunt, and T. Boland, "Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography", Tissue Engineering, Vol. 10, No. 9-10, 2004, pp. 1316-1322, doi: https://doi.org/10.1089/ten.2004.10.1316.   DOI
39 P. Jacobs, "Stereolithography 1993: epoxy resins, improved accuracy, and investment casting", Proc. SPIE 2102, Coupling Technology to National Need, 1994, doi: https://doi.org/10.1117/12.170612.   DOI
40 F. P. W. Melchels, J. Feijen, and D. W. Grijpma, "A review on stereolithography and its applications in biomedical engineering", Biomaterials, Vol. 31, No. 24, 2010, pp. 6121-6130, doi: https://doi.org/10.1016/j.biomaterials.2010.04.050.   DOI
41 J. M. Williams, A. Adewunmi, R. M. Schek, C. L. Flanagan, P. H. Krebsbach, S. E. Feinberg, S. J. Hollister, and S. Das, "Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering", Biomaterials, Vol. 26, No. 23, 2005, pp. 4817-4827, doi: https://doi.org/10.1016/j.biomaterials.2004.11.057.   DOI
42 K. A. Sidarto, A. Kania, and N. Sumarti, "Finding multiple solutions of multimodal optimization using spiral optimization algorithm with clustering", Mendel, Vol. 23, No. 1, 2017, pp. 95-102, doi: https://doi.org/10.13164/mendel.2017.1.095.   DOI
43 M. N. Jahangir, M. A. H. Mamun, and M. P. Sealy, "A review of additive m anufacturing of m agnesium alloys", AIP Conf. Proc., Vol. 1980, No. 1, 2018, doi: https://doi.org/10.1063/1.5044305.   DOI
44 B. Zhu, "Next generation fuel cell R & D ", Int. J. Energy Res., Vol. 30, No. 11, 2006, pp. 895-903, doi: https://doi.org/10.1002/er.1195.   DOI
45 C. Schubert, M. C. Van Langeveld, and L. A. Donoso, "Innovations in 3D printing: a 3D overview from optics to organs", Br. J. Ophthalmol., Vol. 98, No. 2, 2014, pp. 159-161, doi: https://doi.org/10.1136/bjophthalmol-2013-304446.   DOI
46 M. Vaezi and C. K. Chua, "Effects of layer thickness and binder saturation level parameters on 3D printing process", Int. J. Adv. Manuf. Technol., Vol. 53, No. 1-4, 2011, pp. 275-284, doi: https://doi.org/10.1007/s00170-010-2821-1.   DOI
47 B. Berman, "3-D printing: the new industrial revolution", Bus. Horiz., Vol. 55, No. 2, 2012, pp. 155-162, doi: https://doi.org/10.1016/j.bushor.2011.11.003.   DOI
48 V. Petrovic, J. V. H. Gonzalez, O. J. Ferrando, J. D. Gordillo, J. R. B. Puchades, and L. P. Grinan, "Additive layered manufacturing: sectors of industrial application shown through case studies", Vol. 49, No.4, 2011, pp. 1061-1079, doi: https://doi.org/10.1080/00207540903479786.   DOI
49 C. Wang, R. I. Tomov, R. V. Kumar, and B. A. Glowacki, "Inkjet printing of gadolinium-doped ceria electrolyte on NiO-YSZ substrates for solid oxide fuel cell applications", J. Mater. Sci., Vol. 46, No. 21, 2011, pp. 6889-6896, doi: https://doi.org/10.1007/s10853-011-5653-y.   DOI
50 N. M. Farandos, L. Kleiminger, T. Li, A. Hankin, and G. H. Kelsall, "Three-dimensional inkjet printed solid oxide electrochemical reactors. I. Yttria-stabilized zirconia electrolyte", Electrochim. Acta, Vol. 213, 2016, pp. 324-331, doi: https://doi.org/10.1016/j.electacta.2016.07.103.   DOI
51 R. I. Tom ov, M . Krauz, A. Tluczek, R. Kluczowski, Venkatesan V. Krishnan, K. Balasubramanian, R. V. Kumar, and B. A. Glowacki, "Vacuum-sintered stainless steel porous supports for inkjet printing of functional SOFC coatings", Mater. Renew. Sustain. Energy, Vol. 4, No. 3, 2015, pp. 4-14, doi: https://doi.org/10.1007/s40243-015-0056-7.   DOI
52 A. M. Sukeshini, P. Gardner, F. Meisenkothen, T. Jenkins, R. Miller, M. Rottmayer, and T. L. Reitz, "Aerosol jet printing and microstructure of SOFC electrolyte and cathode layers", ECS Trans., Vol. 35, No. 1, 2011, pp. 2151-2160, doi: https://doi.org/10.1149/1.3570207.   DOI
53 J. Will, A. Mitterdorfer, C. Kleinlogel, D. Perednis, and L. J. Gauckler, "Fabrication of thin electrolytes for second-generation solid oxide fuel cells", Solid State Ionics, Vol. 131, No. 1-2, 2000, pp. 79-96, doi: https://doi.org/10.1016/S0167-2738(00)00624-X.   DOI
54 A. Kirubakaran, S. Jain, and R. K. Nema, "A review on fuel cell technologies and power electronic interface", Renew. Sustain. Energy Rev., Vol. 13, No. 9, 2009, pp. 2430-2440, doi: https://doi.org/10.1016/j.rser.2009.04.004.   DOI
55 N. Mahato, A. Banerjee, A. Gupta, S. Omar, and K. Balani, "Progress in material selection for solid oxide fuel cell technology: a review", Prog. Mater. Sci., Vol. 72, 2015, pp. 141-337, doi: https://doi.org/10.1016/j.pmatsci.2015.01.001.   DOI
56 R. I. Tomov, M. Krauz, J. Jewulski, S. C. Hopkins, J. R. Kluczowski, D. M. Glowacka, and B. A. Glowacki, "Direct ceramic inkjet printing of yttria-stabilized zirconia electrolyte layers for anode-supported solid oxide fuel cells", J. Power Sources, Vol. 195, No. 21, 2010, pp. 7160-7167, doi: https://doi.org/10.1016/j.jpowsour.2010.05.044.   DOI
57 S. F. S. Shirazi, S. Gharehkhani, M. Mehrali, H. Yarmand, H. S. C. Metselaar, N. A. Kadri, and N. A. A. Osman, "A review on powder-based additive manufacturing for tissue engineering: Selective laser sintering and inkjet 3D printing", Sci. Technol. Adv. Mater., Vol. 16, No. 3, 2015, doi: https://doi.org/10.1088/1468-6996/16/3/033502.   DOI
58 M. Vaezi, H. Seitz, and S. Yang, "A review on 3D micro-additive manufacturing technologies", Int. J. Adv. Manuf. Technol., Vol. 67, No. 5-8, 2013, pp. 1721-1754, doi: https://doi.org/10.1007/s00170-012-4605-2.   DOI
59 S. Eshraghi and S. Das, "Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering", Acta Biomater., Vol. 6, No. 7, 2010, pp. 2467-2476, doi: https://doi.org/10.1016/j.actbio.2010.02.002.   DOI
60 J. C. Ruiz-Morales, A. Tarancon, J. Canales-Vazquez, J. Mendez-Ramos, L. Hernandez-Afonso, P. Acosta-Mora, J. R. M. Ruedac, and R. Fernandez-Gonzalez, "Three dimensional printing of components and functional devices for energy and environmental applications", Energy Environ. Sci., Vol. 10, No. 4, 2017, pp. 846-859, doi: https://doi.org/10.1039/c6ee03526d.   DOI
61 A. Chroneos, B. Yildiz, A. Tarancon, D. Parfitt, and J. A. Kilner, "Oxygen diffusion in solid oxidefuel cell cathode and electrolyte materials: mechanistic insights from atomistic simulations ", Energy Environ. Sci., Vol. 4, No. 8, 2011, pp. 2774-2789, doi: https://doi.org/10.1039/c0ee00717j.   DOI
62 A. M. Sukeshini, R. Cummins, T. L. Reitz, and R. M. Miller, "Inkjet printing of anode supported SOFC: comparison of slurry pasted cathode and printed cathode", Electrochem. Solid-State Lett., Vol. 12, No. 12, 2009, pp. B176, doi: https://doi.org/10.1149/1.3243468.   DOI
63 R. I. Tomov, R. Duncan, M. Krauz, R. V. Kumar, and B. A. Glowacki, "Inkjet printing and inkjet infiltration of functional coatings for SOFCs fabrication", E3S Web Conf. SEED 2016, Vol. 10, p. 000098, 2016, doi: https://doi.org/10.1051/e3sconf/20161000098.   DOI
64 J. Liu and S. Bai, "Femtosecond laser additive manufacturing of YSZ", Appl. Phys. A Mater. Sci. Process., Vol. 123, No. 4, pp. 1-8, 2017, doi: https://doi.org/10.1007/s00339-017-0929-y.   DOI
65 V. S. Bagotsky, "Solid‐oxide fuel cells", Fuel Cells, 2008, pp. 135-160, doi: https://doi.org/10.1002/9780470432204.ch8.   DOI
66 N. M. Sammes, Y. Du, and R. Bove, "Design and fabrication of a 100 W anode supported micro-tubular SOFC stack", J. Power Sources, Vol. 145, No. 2, 2005, pp. 428-434, doi: https://doi.org/10.1016/j.jpowsour.2005.01.079.   DOI
67 S. P. S. Badwal and K. Foger, "Solid oxide electrolyte fuel cell review", Ceram. Int., Vol. 22, No. 3, 1996, pp. 257-265, doi: https://doi.org/10.1016/0272-8842(95)00101-8.   DOI
68 R. M. Ormerod, "Solid oxide fuel cells", Chem. Soc. Rev., Vol. 32, No. 1, 2003, pp. 17-28, doi: https://doi.org/10.1039/b105764m.   DOI
69 N. Q. Minh, "Ceramic fuel cells", Vol. 76, No. 3, 1993, pp. 563-588, doi: https://doi.org/10.1111/j.1151-2916.1993.tb03645.x.   DOI
70 P. C. Su, C. C. Chao, J. H. Shim, R. Fasching, and F. B. Prinz, "Solid oxide fuel cell with corrugated thin film electrolyte", Nano Lett., Vol. 8, No. 8, pp. 2289-2292, 2008, doi: https://doi.org/10.1021/nl800977z.   DOI
71 B. Xing, C. Cao, W. Zhao, M. Shen, C. Wang, and Z. Zhao, "Dense 8 mol% yttria-stabilized zirconia electrolyte by DLP stereolithography", J. Eur. Ceram. Soc., Vol. 40, No. 4, pp. 1418-1423, 2020, doi: https://doi.org/10.1016/j.jeurceramsoc.2019.09.045.   DOI
72 S. P. Jiang, "A review of wet impregnation-an alternative method for the fabrication of high performance and nano-structured electrodes of solid oxide fuel cells", Mater. Sci. Eng. A, Vol. 418, No. 1-2, 2006, pp. 199-210, doi: https://doi.org/10.1016/j.msea.2005.11.052.   DOI
73 A. Atkinson, S. Barnett, R. J. Gorte, J. T. S. Irvine, A. J. McEvoy, M. Mogensen, S. C. Singhal, and J. Vohs, "Advanced anodes for high-temperature fuel cells", Mater. Sustain. Energy, Vol. 3, 2010, pp. 213-223, doi: https://doi.org/10.1038/nmat1040.   DOI
74 Z. Liu, B. Liu, D. Ding, M. Liu, F. Chen, and C. Xia, "Review fabrication and modification of solid oxide fuel cell anodes via wet impregnation/infiltration technique", J. Power Sources, Vol. 237, 2013, pp. 243-259, doi: https://doi.org/10.1016/j.jpowsour.2013.03.025.   DOI
75 R. J. Gorte and J. M. Vohs, "Nanostructured anodes for solid oxide fuel cells", Curr. Opin. Colloid Interface Sci., Vol. 14, No. 4, 2009, pp. 236-244, doi: https://doi.org/10.1016/j.cocis.2009.04.006.   DOI
76 E. D. Wachsman and K. T. Lee, "Lowering the temperature of solid oxide fuel cells", Science, Vol. 334, No. 6058, 2011, pp. 935-939, doi: https://doi.org/10.1126/science.1204090.   DOI
77 S. Guo, H. Wu, F. Puleo, and L. Liotta, "B-site metal (Pd, Pt, Ag, Cu, Zn, Ni) promoted La1-xSrxCo1-yFeyO3-δ perovskite oxides as cathodes for IT-SOFCs", Catalysts, Vol. 5, No. 1, 2015, pp. 366-391, doi: https://doi.org/10.3390/catal5010366.   DOI
78 D. Ding, X. Li, S. Y. Lai, K. Gerdes, and M. Liu, "Enhancing SOFC cathode performance by surface modification through infiltration", Energy Environ. Sci., Vol. 7, No. 2, pp. 552-575, 2014, doi: https://doi.org/10.1039/c3ee42926a.   DOI
79 E. A. Roth, T. Xu, M. Das, C. Gregory, J. J. Hickman, and T. Boland, "Inkjet printing for high-throughput cell patterning", Biomaterials, Vol. 25, No. 17, 2004, pp. 3707-3715, doi: https://doi.org/10.1016/j.biomaterials.2003.10.052.   DOI
80 M. A. Sukeshini, R. Cummins, T. L. Reitz, and R. M. Miller, "Ink-jet printing: a versatile method for multilayer solid oxide fuel cells fabrication", J. Am. Ceram. Soc., Vol. 92, No. 12, 2009, pp. 2913-2919, doi: https://doi.org/10.1111/j.1551-2916.2009.03349.x.   DOI
81 V. Esposito, C. Gadea, J. H jelm , D. M arani, Q . Hu, K. Agersted, S. Ramousse, and S. H. Jensen, "Fabrication of thin yttria-stabilized-zirconia dense electrolyte layers by inkjet printing for high performing solid oxide fuel cells", J. Power Sources, Vol. 273, 2015, pp. 89-95, doi: https://doi.org/10.1016/j.jpowsour.2014.09.085.   DOI
82 G. D. Han, K. C. Neoh, K. Bae, H. J. Choi, S. W. Park, J. W. Son, and J. H. Shim, "Fabrication of lanthanum strontium cobalt ferrite (LSCF) cathodes for high performance solid oxide fuel cells using a low price commercial inkjet printer", J. Power Sources, Vol. 306, 2016, pp. 503-509, doi: https://doi.org/10.1016/j.jpowsour.2015.12.067.   DOI
83 G. Cummins and M. P. Y. Desmulliez, "Inkjet printing of conductive materials: a review", Circuit World, Vol. 38, No. 4, 2012, pp. 193-213, doi: https://doi.org/10.1108/03056121211280413.   DOI
84 P. Calvert, "Inkjet printing for materials and devices", Chem. Mater., Vol. 13, No. 10, 2001, pp. 3299-3305, doi: https://doi.org/10.1021/cm0101632.   DOI
85 W. Z. Zhu and S. C. Deevi, "A review on the status of anode materials for solid oxide fuel cells", Mater. Sci. Eng. A, Vol. 362, No. 1-2, 2003, pp. 228-239, doi: https://doi.org/10.1016/S0921-5093(03)00620-8.   DOI
86 J. S. Kim, M. H. Cho, S. C. Lee, J. H. Pang, J. H. Lee, and A. Ohki, "Lead selective lipophilic acyclic diionizable polyethers", Talanta, Vol. 49, No. 1, 1999, pp. 69-75, doi: https://doi.org/10.1016/S0039-9140(98)00362-2.   DOI
87 S. de Souza, S. J. Visco, and L. C. De Jonghe, "Thin-film solid oxide fuel cell with high performance at low-temperature", Solid State Ionics, Vol. 98, No. 1-2, 1997, pp. 57-61, doi: https://doi.org/10.1016/S0167-2738(96)00525-5.   DOI
88 B. Xing, Y. Yao, X. Meng, W. Zhao, M. Shen, S. Gao, and Z. Zhao, "Self-supported yttria-stabilized zirconia ripple-shaped electrolyte for solid oxide fuel cells application by digital light processing three-dimension printing", Scr. Mater., Vol. 181, 2020, pp. 62-65, doi: https://doi.org/10.1016/j.scriptamat.2020.02.004.   DOI
89 L. Wei, J. Zhang, F. Yu, W. Zhang, X. Meng, N. Yang, and S. Liu, "A novel fabrication of yttria-stabilized-zirconia dense electrolyte for solid oxide fuel cells by 3D printing technique", Int. J. Hydrogen Energy, Vol. 44, No. 12, 2019, pp. 6182-6191, doi: https://doi.org/10.1016/j.ijhydene.2019.01.071.   DOI
90 Z. Feng, L. Liu, L. Li, J. Chen, Y. Liu, Y. Li, L. Hao, and Y. Wu, "3D printed Sm-doped ceria composite electrolyte membrane for low temperature solid oxide fuel cells", Int. J. Hydrogen Energy, Vol. 44, No. 26, 2019, pp. 13843-13851, doi: https://doi.org/10.1016/j.ijhydene.2019.03.254.   DOI
91 G. Kim, S. Lee, J. Y. Shin, G. Corre, J. T. S. Irvine, J. M. Vohs, and R. J. Gorte, "The electrochemical society investigation of the structural and catalytic requirements for high-performance SOFC anodes formed by infiltration of LSCM", Electrochem. Solid-State Lett., Vol. 12, No. 3, 2009, pp. B48, doi: https://doi.org/10.1149/1.3065971.   DOI
92 G. Manogharan, M. Kioko, and C. Linkous, "Binder jetting: a novel solid oxide fuel-cell fabrication process and evaluation", Jom, Vol. 67, No. 3, 2015, pp. 660-667, doi: https://doi.org/10.1007/s11837-015-1296-9.   DOI
93 J. P. P. Huijsmans, F. P. F. Van Berkel, and G. M. Christie, "Intermediate temperature SOFC - a promise for the 21st century", J. Power Sources, Vol. 71, No. 1-2, 1998, pp. 107-110, doi: https://doi.org/10.1016/S0378-7753(97)02789-4.   DOI
94 C. Sun, R. Hui, and J. Roller, "Cathode materials for solid oxide fuel cells: a review", J. Solid State Electrochem., Vol. 14, No. 7, pp. 1125-1144, 2010, doi: https://doi.org/10.1007/s10008-009-0932-0.   DOI
95 H. Moon, S. D. Kim, E. W. Park, S. H. Hyun, and H. S. Kim, "Characteristics of SOFC single cells with anode active layer via tape casting and co-firing", Int. J. Hydrogen Energy, Vol. 33, No. 11, 2008, pp. 2826-2833, doi: https://doi.org/10.1016/j.ijhydene.2008.03.024.   DOI
96 Z. Wang, J. Qian, J. Cao, S. Wang, and T. Wen, "A study of multilayer tape casting method for anode-supported planar type solid oxide fuel cells (SOFCs)", J. Alloys Compd., Vol. 437, No. 1-2, 2007, pp. 264-268, doi: https://doi.org/10.1016/j.jallcom.2006.07.110.   DOI
97 J. H. Song, S. I. Park, J. H. Lee, and H. S. Kim, "Fabrication characteristics of an anode-supported thin-film electrolyte fabricated by the tape casting method for IT-SOFC", J. Mater. Process. Technol., Vol. 198, No. 1-3, 2008, pp. 414-418, doi: https://doi.org/10.1016/j.jmatprotec.2007.07.030.   DOI
98 J. E. Fromm, "Numerical calculation of the fluid dynamics of drop-on-demand jets", IBM J. Res. Dev., Vol. 28, 1984, pp. 322-333.   DOI
99 S. Kirihara, "Creation of functional ceramics structures by using stereolithographic 3D printing", Trans. JWRI, Vol. 43, No. 1, 2014, pp. 5-10.
100 E. M. Hernandez-Rodriguez, P. Acosta-Mora, J. Mendez-Ramos, E. B. Chinea, P. E. Ferrera, J. Canales-Vazquez, P. Nunez, and J. C. Ruiz-Morales, "Prospective use of the 3D printing technology for the microstructural engineering of solid oxide fuel cell components", Bol. Soc. Esp. Ceram. Vidr., Vol. 53, No. 5, 2014, pp. 213-216, doi: https://doi.org/10.3989/cyv.252014.   DOI
101 D. Young, A. M. Sukeshini, R. Cummins, H. Xiao, M. Rottmayer, and T. Reitz, "Ink-jet printing of electrolyte and anode functional layer for solid oxide fuel cells", J. Power Sources, Vol. 184, No. 1, 2008, pp. 191-196, doi: https://doi.org/10.1016/j.jpowsour.2008.06.018.   DOI
102 C. Wang, S. C. Hopkins, R. I. Tomov, R. V. Kumar, and B. A. Glowacki, "Optimisation of CGO suspensions for inkjet-printed SOFC electrolytes", J. Eur. Ceram. Soc., Vol. 32, No. 10, 2012, pp. 2317-2324, doi: https://doi.org/10.1016/j.jeurceramsoc.2012.03.001.   DOI
103 C. Fu, S. H. Chan, Q. Liu, X. Ge, and G. Pasciak, "Fabrication and evaluation of Ni-GDC composite anode prepared by aqueous-based tape casting method for low-temperature solid oxide fuel cell", Int. J. Hydrogen Energy, Vol. 35, No. 1, 2010, pp. 301-307, doi: https://doi.org/10.1016/j.ijhydene.2009.09.101.   DOI
104 Y. Xu, N. Farandos, M. Rosa, P. Zielke, V. Esposito, P. V. Hendriksen, S. H. Jensen, T. Li, G. Kelsall, and R. Kiebach, "Continuous hydrothermal flow synthesis of Gd‐doped CeO2 (GDC) nanoparticles for inkjet printing of SOFC electrolytes", Int. J. Appl. Ceram. Technol., Vol. 15, No. 2, 2018, pp. 315-327, doi: https://doi.org/10.1111/ijac.12845.   DOI
105 S. Masciandaro, M. Torrell, P. Leone, and A. Tarancon, "Three-dimensional printed yttria-stabilized zirconia self-supported electrolytes for solid oxide fuel cell applications", J. Eur. Ceram. Soc., Vol. 39, No. 1, pp. 9-16, 2019, doi: https://doi.org/10.1016/j.jeurceramsoc.2017.11.033.   DOI
106 A. Arabac and M . F. O ksuzomer, "Preparation and characterization of 10 mol% Gd doped CeO2 (GDC) electrolyte for SOFC applications", Ceram. Int., Vol. 38, No. 8, pp. 6509-6515, 2012, doi: https://doi.org/10.1016/j.ceramint.2012.05.030.   DOI
107 N. Q. Minh, "Solid oxide fuel cell technology-features and applications", Solid State Ionics, Vol. 174, No. 1-4, 2004, pp. 271-277, doi: https://doi.org/10.1016/j.ssi.2004.07.042.   DOI
108 B. K. Park, J. W. Lee, S. B. Lee, T. H. Lim, S. J. Park, R. H. Song, W. B. Im, and D. R. Shin, "La-doped SrTiO3 interconnect materials for anode-supported flat-tubular solid oxide fuel cells", Int. J. Hydrogen Energy, Vol. 37, No. 5, 2012, pp. 4319-4327, doi: https://doi.org/10.1016/j.ijhydene.2011.10.125.   DOI
109 F. Snijkers, A. de Wilde, S. Mullens, and J. Luyten, "Aqueous tape casting of yttria stabilised zirconia using natural product binder", J. Eur. Ceram. Soc., Vol. 24, No. 6, 2004, pp. 1107-1110, doi: https://doi.org/10.1016/S0955-2219(03)00388-1.   DOI
110 D. Montinaro, V. M. Sglavo, M. Bertoldi, T. Zandonella, A. Arico, M. Lo Faro, and V. Antonucci, "Tape casting fabrication and co-sintering of solid oxide "half cells" with a cathode-electrolyte porous interface", Solid State Ionics, Vol. 177, No. 19-25, 2006, pp. 2093-2097, doi: https://doi.org/10.1016/j.ssi.2006.01.016.   DOI
111 W. S. Jang, S. H. Hyun, and S. G. Kim, "Preparation of YSZ/YDC and YSZ/GDC composite electrolytes by the tape casting and sol-gel dip-drawing coating method for lowtemperature SOFC", J. Mater. Sci., Vol. 37, No. 12, 2002, pp. 2535-2541, doi: https://doi.org/10.1023/A:1015451910081.   DOI
112 C. Xia, F. Chen, and M. Liu, "Reduced-temperature solid oxide fuel cells fabricated by screen printing", Electrochem. Solid-State Lett., Vol. 4, No. 5, 2001, pp. A52, doi: https://doi.org/10.1149/1.1361158.   DOI
113 D. Simwonis, H. Thulen, F. J. Dias, A. Naoumidis, and D. Stover, "Properties of Ni/YSZ porous cermets for SOFC anode substrates prepared by tape casting and coat-mix® process", J. Mater. Process. Technol., Vol. 92-93, 1999, pp. 107-111, doi: https://doi.org/10.1016/S0924-0136(99)00214-9.   DOI
114 H. Moon, S. D. Kim, S. H. Hyun, and H. S. Kim, "Development of IT-SOFC unit cells with anode-supported thin electrolytes via tape casting and co-firing", Int. J. Hydrogen Energy, Vol. 33, No. 6, 2008, pp. 1758-1768, doi: https://doi.org/10.1016/j.ijhydene.2007.12.062.   DOI
115 D. Rotureau, J. P. Viricelle, C. Pijolat, N. Caillol, and M. Pijolat, "Development of a planar SOFC device using screen-printing technology", J. Eur. Ceram. Soc., Vol. 25, No. 12, 2005, pp. 2633-2636, doi: https://doi.org/10.1016/j.jeurceramsoc.2005.03.115.   DOI
116 Y. Zhang, Q. Sun, C. Xia, and M. Ni, "Geometric properties of nanostructured solid oxide fuel cell electrodes", J. Electrochem. Soc., Vol. 160, No. 3, 2013, pp. F278-F289, doi: https://doi.org/10.1149/2.057303jes.   DOI
117 H. Sumi, T. Yamaguchi, K. Hamamoto, T. Suzuki, and Y. Fujishiro, "High performance of La0.6Sr0.4Co0.2Fe0.86O3-Ce0.9Gd0.1O1.95 nanoparticulate cathode for intermediate temperature microtubular solid oxide fuel cells", J. Power Sources, Vol. 226, 2013, pp. 354-358, doi: https://doi.org/10.1016/j.jpowsour.2012.11.015.   DOI
118 A. Mahajan, C. D. Frisbie, and L. F. Francis, "Optimization of aerosol jet printing for high-resolution, high-aspect ratio silver lines", ACS Appl. Mater. Interfaces, Vol. 5, No. 11, 2013, pp. 4856-4864, doi: https://doi.org/10.1021/am400606y.   DOI
119 N. Reis and B. Derby, "Ink jet deposition of ceramic suspensions: modeling and experiments of droplet formation", MRS Proceedings, Vol. 624, 2000, pp. 65, doi: https://doi.org/10.1557/PROC-624-65.   DOI
120 D. Zhao, T. Liu, M. Zhang, R. Liang, and B. Wang, "Fabrication and characterization of aerosol-jet printed strain sensors for multifunctional composite structures", Smart Mater. Struct., Vol. 21, No. 11, 2012, doi: https://doi.org/10.1088/0964-1726/21/11/115008.   DOI
121 D. W. Hutmacher, T. Schantz, I. Zein, K. W. Ng, S. H. Teoh, and K. C. Tan, "Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling", J. Biomed. M ater. Res., Vol. 55, No. 2, 2001, pp. 203-216, doi: https://doi.org/10.1002/1097-4636(200105)55:2<203::AID-JBM1007>3.0.CO;2-7.   DOI
122 O. A. Mohamed, S. H. Masood, and J. L. Bhowmik, "Optimization of fused deposition modeling process parameters: a review of current research and future prospects", Adv. Manuf., Vol. 3, No. 1, 2015, pp. 42-53, doi: https://doi.org/10.1007/s40436-014-0097-7.   DOI
123 M. L. Shofner, K. Lozano, F. J. Rodriguez‐Macias, and E. V. Barrera, " Nanofiber‐reinforced polymers prepared by fused deposition modeling", J. Appl. Polym. Sci., Vol. 89, No. 11, 2003, pp. 3081-3090, doi: https://doi.org/10.1002/app.12496.   DOI
124 I. Zein, D. W. Hutmacher, K. C. Tan, and S. H. Teoh, "Fused deposition modeling of novel scaffold architectures for tissue engineering applications", Biomaterials, Vol. 23, No. 4, 2002, pp. 1169-1185, doi: https://doi.org/10.1016/S0142-9612(01)00232-0.   DOI
125 C. C. Chao, C. M. Hsu, Y. Cui, and F. B. Prinz, "Improved solid oxide fuel cell performance with nanostructured electrolytes", ACS Nano, Vol. 5, No. 7, pp. 5692-5696, 2011, doi: https://doi.org/10.1021/nn201354p.   DOI
126 A. M. El-Toni, T. Yamaguchi, S. Shimizu, Y. Fujishiro, and M. Awano, "Development of a dense electrolyte thin film by the ink‐jet printing technique for a porous LSM substrate", J. Am. Ceram. Soc., Vol. 91, No. 1, 2008, pp. 346-349, doi: https://doi.org/10.1111/j.1551-2916.2007.02151.x.   DOI
127 M. Dudek, R. I. Tomov, C. Wang, B. A. Glowacki, P. Tomczyk, R. P. Socha, and M. Mosialek, "Feasibility of direct carbon solid oxide fuels cell (DC-SOFC) fabrication by inkjet printing technology", Electrochim. Acta, Vol. 105, 2013, pp. 412-418, doi: https://doi.org/10.1016/j.electacta.2013.04.139.   DOI
128 A. B. Stambouli and E. Traversa, "Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy", Renew. Sustain. Energy Rev., Vol. 6, No. 5, pp. 433-455, 2002, doi: https://doi.org/10.1016/S1364-0321(02)00014-X.   DOI
129 W. B. Russel, N. Wu, and W. Man, "Generalized Hertzian model for the deformation and cracking of colloidal packings saturated with liquid", Langmuir, Vol. 24, No. 5, pp. 1721-1730, 2008, doi: https://doi.org/10.1021/la702633t.   DOI
130 A. Pesce, A. Hornes, M. Nunez, A. Morata, M. Torrell, and A. Tarancon, "3D printing the next generation of enhanced solid oxide fuel and electrolysis cells", J. Mater. Chem. A, 2020, doi: https://doi.org/10.1039/d0ta02803g.   DOI
131 Y. Du, N. M. Sammes, G. A. Tompsett, D. Zhang, J. Swan, and M. Bowden, "Extruded Tubular Strontium- and MagnesiumDoped Lanthanum Gallate, Gadolinium-Doped Ceria, an d Yttria-Stabilized Zirconia Electrolyets: Mechanical and Thermal Properties", J. Electrochem. Soc., Vol. 150, No. 1, 2003, pp. A74, doi: https://doi.org/10.1149/1.1525268.   DOI
132 C. Hatchwell, N. M. Sammes, and I. W. M. Brown, "Fabrication and properties of Ce0.8Gd0.2O1.9 electrolyte-based tubular solid oxide fuel cells", Solid State Ionics, Vol. 126, No. 3-4, 1999, pp. 201-208, doi: https://doi.org/10.1016/S0167-2738(99)00232-5.   DOI
133 F. Tietz, H. P. Buchkremer, and D. Stover, "Components manufacturing for solid oxide fuel cells", Solid State Ionics, Vol. 152-153, 2002, pp. 373-381, doi: https://doi.org/10.1016/S0167-2738(02)00344-2.   DOI
134 S. C. Singhal, "Solid oxide fuel cells for stationary, mobile, and military applications", Solid State Ionics, Vol. 152-153, 2002, pp. 405-410, doi: https://doi.org/10.1016/S0167-2738(02)00349-1.   DOI
135 L. S. Mahmud, A. Muchtar, and M. R. Somalu, "Challenges in fabricating planar solid oxide fuel cells: A review", Renew. Sustain. Energy Rev., Vol. 72, 2017, pp. 105-116, doi: https://doi.org/10.1016/j.rser.2017.01.019.   DOI
136 T. L. Cable and S. W. Sofie, "A symmetrical, planar SOFC design for NASA's high specific power density requirements", J. Power Sources, Vol. 174, No. 1, 2007, pp. 221-227, doi: https://doi.org/10.1016/j.jpowsour.2007.08.110.   DOI
137 N. Sugita, M. Watanabe, Y. Sano, M. Terashima, and M. Mitsuishi, "Cutting tool for bone machining to carry out roughing and finishing in a single pass", Proc. 6th Int. Conf. Lead. Edge Manuf. 21st Century, LEM 2011, Vol. 297, 2011, pp. 103-112, doi: https://doi.org/10.1299/jsmelem.2011.6._3285-1_.   DOI
138 B. S. Prakash, S. S. Kumar, and S. T. Aruna, "Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: a review", Renew. Sustain. Energy Rev., Vol. 36, 2014, pp. 149-179, doi: https://doi.org/10.1016/j.rser.2014.04.043.   DOI
139 A. Sanson, P. Pinasco, and E. Roncari, "Influence of pore formers on slurry composition and microstructure of tape cast supporting ano des for SO FC s", J. Eur. Ceram. Soc., Vol. 28, No. 6, 2008, pp. 1221-1226, doi: https://doi.org/10.1016/j.jeurceramsoc.2007.10.001.   DOI
140 S. D. Kim, S. H. Hyun, J. Moon, J. H. Kim, and R. H. Song, "Fabrication and characterization of anode-supported electrolyte thin films for intermediate temperature solid oxide fuel cells", J. Power Sources, Vol. 139, No. 1-2, 2005, pp. 67-72, doi: https://doi.org/10.1016/j.jpowsour.2004.07.013.   DOI
141 K. Miyamoto, H. Koga, M. Izumi, M. Mizui, and H. Nishiguchi, "Study on fabrication of anodes for SOFCs with 3D printing technology", ECS Trans., Vol. 96, No. 1, 2020, pp. 219-226, doi: https://doi.org/10.1149/09601.0219ecst.   DOI
142 G. D. Han, K. Bae, E. H. Kang, H. J. Choi, and J. H. Shim, "Inkjet printing for manufacturing solid oxide fuel cells", ACS Energy Lett., Vol. 5, No. 5, 2020, pp. 1586-1592, doi: https://doi.org/10.1021/acsenergylett.0c00721.   DOI
143 C. Wang, R. I. Tomov, T. B. Mitchell-Williams, R. V. Kumar, and B. A. Glowacki, "Inkjet printing infiltration of Ni-Gd:CeO2 anodes for low temperature solid oxide fuel cells", J. Appl. Electrochem., Vol. 47, No. 11, 2017, pp. 1227-1238, doi: https://doi.org/10.1007/s10800-017-1114-x.   DOI
144 T. B. Mitchell-Williams, R. I. Tomov, S. A. Saadabadi, M. Krauz, P. V. Aravind, B. A. Glowacki, and R. V. Kumar, "Infiltration of commercially available, anode supported SOFC's via inkjet printing", Mater. Renew. Sustain. Energy, Vol. 6, No. 2, 2017, pp. 1-9, doi: https://doi.org/10.1007/s40243-017-0096-2.   DOI
145 R. I. Tomov, T. Mitchell-Williams, C. Gao, R. V. Kumar, and B. A. Glowacki, "Performance optimization of LSCF/Gd:CeO2 composite cathodes via single-step inkjet printing infiltration", J. Appl. Electrochem., Vol. 47, No. 5, 2017, pp. 641-651, doi: https://doi.org/10.1007/s10800-017-1066-1.   DOI
146 B. Huang, X. J. Zhu, Y. Lv, and H. Liu, "High-performance Gd0.2Ce0.8O2-impregnated LaNi0.6Fe0.4O3-δ cathodes for interm ediate tem perature solid oxide fuel cell", J. Power Sources, Vol. 209, 2012, pp. 209-219, doi: https://doi.org/10.1016/j.jpowsour.2012.02.103.   DOI
147 Q. Li, L. P. Sun, L. H. Huo, H. Zhao, and J. C. Grenier, "Electrochemical performance of La1.6Sr0.4NiO4-Ag composite cathodes for intermediate-temperature solid oxide fuel cells", J. Power Sources, Vol. 196, No. 4, 2011, pp. 1712-1716, doi: https://doi.org/10.1016/j.jpowsour.2010.10.032.   DOI
148 E. H. Da'as, J. T. S. Irvine, E. Traversa, and S. Boulfrad, "Controllable impregnation via inkjet printing for the fabrication of solid oxide cell air electrodes", ECS Trans., Vol. 57, No. 1, 2013, pp. 1851-1857, doi: https://doi.org/10.1149/05701.1851ecst.   DOI