• Title/Summary/Keyword: 3-Phase Induction Motor

Search Result 336, Processing Time 0.022 seconds

An Analysis on a Torque Error of a 3-Phase Induction Motor due to Simplified Equivalent Circuit (3상 유도전동기의 간이등가회로에 의한 토크 오차 분석)

  • Shin, Myoung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.1
    • /
    • pp.45-49
    • /
    • 2014
  • Torque of an induction motor is generally calculated by simplified equivalent circuit. However, the torque has an error since it is calculated by simplified equivalent circuit. In this paper, stator and rotor currents, torque, efficiency, and power factor are derived from the equivalent circuit of an induction motor using mesh analysis method. Then, they are compared with those calculated from simplified equivalent circuit.

Calculation of Iron Losses in Inverter-fed Induction Motors based on Time-stepping FEM

  • Wang, Hai-Rong;Wu, Jian-Hua
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.3
    • /
    • pp.283-287
    • /
    • 2013
  • This paper presents a method for calculating iron losses in three-phase induction motors under the inverter supply through the field-circuit coupled time-stepping finite element method (FEM). Iron losses are calculated by using the three-term iron losses separated model and modifying the loss coefficients obtained by the iron losses curves which are provided by the manufacturer under the sinusoidal supply. Simulation results by the presented method are verified by the measured results with an error lower than 5%, confirming the validity of the proposed method. Finally, iron losses distribution of the inverter-fed three-phase induction prototype motor is shown.

On a Study An Induction Motor Position Control Using Neural Networks (신경 회로망을 이용한 유도전동기의 위치 제어에 관한 연구)

  • Kim, Hyung-Gu;Yang, Oh
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.503-505
    • /
    • 1998
  • The position control of an induction motor using Feedforward Neural Networks(FNNs) was studied in this paper. A teaching signal was obtained from sliding surface without a particular signal. And the FNNs team through the back propagation algorithm so as to reduce the error between the real position of the motor and the reference value. The structure of a controller was designed simply, for the fast calculating response which is certainly necessary for induction motor position control. And to show the superiority of this controller, 3-phase vector control induction motor whose power capacity is 2.2kw was modeled, and it was simulated.

  • PDF

Oxidation Models of Rotor Bar and End Ring Segment to Simulate Induction Motor Faults in Progress

  • Jung, Jee-Hoon
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.163-172
    • /
    • 2011
  • Oxidation models of a rotor bar and end ring segment in an induction motor are presented to simulate the behavior of an induction machine working with oxidized rotor parts which are modeled as rotor faults in progress. The leakage inductance and resistance of the rotor parts arc different from normal values because of the oxidation process. The impedance variations modify the current density and magnetic flux which pass through the oxidized parts. Consequently, it causes the rotor asymmetry which induces abnormal harmonics in the stator current spectra of the faulty machine. The leakage inductances of the oxidation models are derived by the Ampere's law. Using the proposed oxidation models, the rotor bar and end ring faults in progress can be modeled and simulated with the motor current signature analysis (MCSA). In addition, the oxidation process of the rotor bar and end ring segment can motivate the rotor asymmetry, which is induced by electromagnetic imbalances, and it is one of the major motor faults. Results of simulations and experiments are compared to each other to verify the accuracy of the proposed models. Experiments are achieved using 3.7 kW, 3-phase, and squirrel cage induction motors with a motor drive inverter.

Performance Improvement on Cycloconverter-fed Induction Motor Speed Control System (공침법을 이용한 PbTiO3-Polymer O-3 압전 Composites)

  • Cho, Ok-Kyun;Shin, Hwi-Beom;Yuon, Myung-Joong
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.5
    • /
    • pp.352-359
    • /
    • 1987
  • The cycloconverter operating on a circulating current-free mode has many zero crossing points. If an exact zero crossing points are not detected, the three phase-unbalanced currents will flow in a motor. In this paper, the current feedback using a current reference wave is proposed to improve the problems of zero crossing detection, three phase-unbalanced voltages, currents, and torgue ripples. To prevent the saturation of the air gap flux and keep the torque constant, the constant voltage / hertz control with IR compensation is adopted. The PI-controller is designed using the linearized model of the cycloconverterinduction motor system. Alsi, Z-80A single board computer has been used to implement the proposed scheme which results in the performance improvement of cycloconterter-fed induction motor speed control system.

  • PDF

Experimental Test for the Optimum Design of a Rotor Slot in Three Phase Inverter-fed Induction Motor (3상 인버터 구동 유도전동기의 회전자 1 슬롯 최적설계에 관한 실험)

  • Kim, J.W.;Kwon, B.I.;Kim, B.T.;Jo, Y.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.131-134
    • /
    • 2002
  • The optimum design technology using combind F.E.M and eauivalent circuit is so fast and accurate that it can be applied to the optimum rotor design of an inverter-fed induction motor in high efficiency motor making industry. The optimum characteristics fer a rotor slot model of a 3 phase inverter-134 nduction motor was previously verified by a time-step F.E.M. In this paper, four verification models with the design variables near the optimum point are designed to chech whether the characteristics of a slot model presented is not less than those of the near models. The outputs of whole models are analyzed in a time-step Finite Element Method and compared in the experimental test. The economical and efficient selecting method of design variables fur the computer simulation and experimental test is presented in order to assure the optimum point.

  • PDF

Induction Motor Drives with Low Switching Acoustic Noise Based on the Two-Phase Modulated Random Lead-Lag PWM Scheme (2상 변조된 랜덤 Lead-Lag PWM기반의 저 스위칭 소음 유도모터 구동 시스템)

  • 위석오;정영국;임영철;양승학
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.151-164
    • /
    • 2003
  • In this paper, induction motor drives with low switching acoustic noise based on the 2 phase modulated RLL(Random Lead-Lag) PWM is proposed and implemented. The proposed switching method is much bettor than 3 phase modulated RLL-PWM from the standpoint of the broadening effect of the acoustic noise spectrum. Along with the randomization of PWM Pulses, SVM(Space Vector Modulation) is executed in the TMS320C31 DSP(Digital Signal Processor). To verify the validity of the proposed RPWM(Random PWM), the experimental study was tried. The experimental results show that the performance of the proposed method and the 3 phase center-aligned SVM / conventional RLL-PWM are nearly the same from the viewpoint of the constant v/f centrel. But, in case of the proposed 2 phase modulated RLL-PWM, the spectrum characteristics of the voltage and the switching acoustic noise are shown to have better broadening effect than 3 phase modulated one.

On The Characteristics Of Small Size Three Phase Induction Motor With A Solid Iron Potor (강괴회전자를 가진 소용량 3상유도전동기의 특성 해석에 관한 연구)

  • 이윤종;임달호;정필선
    • 전기의세계
    • /
    • v.24 no.2
    • /
    • pp.63-70
    • /
    • 1975
  • The solid-iron rotor induction motor is the squirral cage type induction motor with its rotor core consisting of solid iron in stead of a laminated core. The specific feature of this motor are that its structure is simple and firm, and therefore provides the great convenience in its operation and that its starting characteristic are excellent. this study is aimedto derive the equation for theroretical evaluation of the speed-torque characteristics of the motor by use of maxwell's equation. Through the series of test on the speed-torque characteristics of this motor which is experimentally constructed, we have proved the feasibility of the equaiton which is derived theoretically to calculate the torque of the motor. In addition we have obtained its general charastristics experimentally.

  • PDF

Reduction of Components in New Family of Diode Clamp Multilevel Inverter Ordeal to Induction Motor

  • Angamuthu, Rathinam;Thangavelu, Karthikeyan;Kannan, Ramani
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.1
    • /
    • pp.58-69
    • /
    • 2016
  • This paper describes the design and implementation of a new diode clamped multilevel inverter for variable frequency drive. The diode clamp multilevel inverter has been widely used for low power, high voltage applications due to its superior performance. However, it has some limitations such as increased number of switching devices and complex PWM control. In this paper, a new topology is proposed. New topology requires only (N-1) switching devices and (N-3) clamping diodes compared to existing topology. A modified APO-PWM control method is used to generate gate pulses for inverter. The proposed inverter topology is coupled with single phase induction motor and its performance is tested by MATLAB simulation. Finally, a prototype model has built and its performance is tested with single phase variable frequency drive.

An Analysis on the Performance of a Twin Stator Single-Phase Induction Manchine (단상 Twin sSator유도기의 특성해석에 관한 연구)

  • Young Moon Hwang
    • 전기의세계
    • /
    • v.21 no.3
    • /
    • pp.7-18
    • /
    • 1972
  • An analysis is made for the performance of twin stator single-phase induction machine having any movable asymmetrical angle of stator windings, with any symmetrical or asymmetrical magnetizing reactance and winding turn-ratio between two stators, provided that asymmetrical common squirrel cage rotor is utilized. This mechanism is a new type, which has the advantage of mading only not the performance prediction in applications as a single-phase electromagnetic driving mechanism but also the analysis prediction of single-phase induction motor with not in quadrature axis. The basis of the analyses are lead by Kron's primitive machine matrix and Morrill's double-revolving field concept. All the performances can be calculated from the test values and design details of the asymmetrical magnetizing reactance twin stator single-phase induction machine and verified by test. And its validity is still demonstrated to the pure twin stator single-phase induction machine.

  • PDF