DOI QR코드

DOI QR Code

Oxidation Models of Rotor Bar and End Ring Segment to Simulate Induction Motor Faults in Progress

  • Jung, Jee-Hoon (Smart Grid Research Division, Korea Electrotechnology Research Institute)
  • 투고 : 2010.06.18
  • 심사 : 2010.11.01
  • 발행 : 2011.03.20

초록

Oxidation models of a rotor bar and end ring segment in an induction motor are presented to simulate the behavior of an induction machine working with oxidized rotor parts which are modeled as rotor faults in progress. The leakage inductance and resistance of the rotor parts arc different from normal values because of the oxidation process. The impedance variations modify the current density and magnetic flux which pass through the oxidized parts. Consequently, it causes the rotor asymmetry which induces abnormal harmonics in the stator current spectra of the faulty machine. The leakage inductances of the oxidation models are derived by the Ampere's law. Using the proposed oxidation models, the rotor bar and end ring faults in progress can be modeled and simulated with the motor current signature analysis (MCSA). In addition, the oxidation process of the rotor bar and end ring segment can motivate the rotor asymmetry, which is induced by electromagnetic imbalances, and it is one of the major motor faults. Results of simulations and experiments are compared to each other to verify the accuracy of the proposed models. Experiments are achieved using 3.7 kW, 3-phase, and squirrel cage induction motors with a motor drive inverter.

키워드

참고문헌

  1. M. E. H. Benbouzid, "A review of induction motors signature analysis as a medium for faults detection," IEEE Trans. Ind. Eletron., Vol. 47, No. 5, pp. 984-993, Oct. 2000. https://doi.org/10.1109/41.873206
  2. M. A. Awadallah and M. M. Morcos, "Application of AI tools in fault diagnosis of electrical machines and drives-an overview," IEEE Trans. Energy Conv., Vol. 18, No. 2, pp. 243-251, Jun. 2003.
  3. R. M. Tallam, S. B. Lee, G. C. Stone, G. B. Kliman, J. Yoo, T. G. Habetler, and R. G. Harley, "A survey of methods for detection of statorrelated faults in induction machines," IEEE Trans. Ind. Appl., Vol. 43, No. 4, pp. 920-933, Jul./Aug. 2007. https://doi.org/10.1109/TIA.2007.900448
  4. A. Sadoughi, M. Ebrahimi, M. Moallem, and S. Sadri, "Intelligent diagnosis of broken bars in induction motors based on new features in vibration spectrum," Journal of Power Electronics, Vol. 8, No. 3, pp. 228-238, Jul. 2008.
  5. C. Kral, F. Pirker, G. Pascoli, and H. Kapeller, "Robust rotor fault detection by means of the vienna monitoring method and a parameter tracking technique," IEEE Trans. Ind. Electron., Vol. 55, No. 12, pp. 4229-4237, Dec. 2008. https://doi.org/10.1109/TIE.2008.2005176
  6. A. Ibrahim, M. El Badaoui, F. Guillet, and F. Bonnardot, "A new bearing fault detection method in induction machines based on instantaneous power factor," IEEE Trans. Ind. Electron., Vol. 55, No. 12, pp. 4252- 4259, Dec. 2008. https://doi.org/10.1109/TIE.2008.2003211
  7. M. Drif and A. J, M. Cardoso, "The use of the instantaneous-reactive-power signature analysis for rotor-cage-fault diagnostics in three-phase induction motors," IEEE Trans. Ind. Electron., Vol. 56, No. 11, pp. 4606-4614, Nov. 2009. https://doi.org/10.1109/TIE.2009.2027922
  8. W. T. Thomson and M. Fenger, "Current signature analysis to detect induction motor faults," IEEE-Industry Applications Magazine, Vol. 7, No. 4, pp. 26-34, Jul./Aug. 2001.
  9. M.E.H. Benbouzid and G.B. Kliman, "What stator current processing-based technique to use for induction motor rotor faults diagnosis?," IEEE Trans. Energy Convers., Vol. 18, No. 2, pp. 238-244, Jun. 2003. https://doi.org/10.1109/TEC.2003.811741
  10. J. Sprooten and J.-C. Mann, "Influence of saturation level on the effect of broken bars in induction motors using fundamental electromagnetic laws and finite element simulations," IEEE Trans. Energy Convers., Vol. 24, No. 3, pp. 557-564, Sep. 2009. https://doi.org/10.1109/TEC.2009.2016126
  11. H. A. Toliyat, and T. A. Lipo, "Transient analysis of cage induction machines under stator, rotor bar and end ring faults," IEEE Trans. Energy Convers., Vol. 10, No. 2, pp. 241-247, Jun. 1995. https://doi.org/10.1109/60.391888
  12. N.-H. Kim, W.-S. Baik, M.-H. Kim, and C.-H. Choi, "Rotor fault detection system for the inverter driven induction motor using current signals," Journal of Power Electronics, Vol. 9, No. 2, pp. 224-231, Mar. 2009.
  13. N.-T. Nguyen and H.-H. Lee, "Decision tree with optimal feature selection for bearing fault detection," Journal of Power Electronics, Vol. 8, No. 1, pp. 101-107, Jan. 2008.
  14. J. Faiz, B. M. Ebrahimi, B. Akin, and H. A. Toliyat, "Dynamic analysis of mixed eccentricity signatures at various operating points and scrutiny of related indices for induction motors," IET Elec. Power Appl., Vol. 4, No. 1, pp. 1-16, Jan. 2010. https://doi.org/10.1049/iet-epa.2008.0224
  15. G. M. Joksimovic, M. D. Durovic, and A. B. Obradovic, "Skew and linear rise of MMF across slot modeling - Winding function approach," IEEE Trans. Energy Convers., Vol. 14, No. 3, pp. 315-320, Sep. 1999. https://doi.org/10.1109/60.790876
  16. X. Luo, Y. Liao, H. A. Toliyat, A. EI-Antably, and T. A. Lipo, "Multiple coupled circuit modeling of induction machines," IEEE Trans. Ind. Appl., Vol. 31, No. 2, pp. 311-318, Mar./Apr. 1995. https://doi.org/10.1109/28.370279
  17. N. H. Kim, "Rotor fault detection system for inverter driven induction motors using currents signals and an encoder," Journal of Power Electronics, Vol. 7, No. 4, pp. 271-277, Oct. 2007.
  18. J. Cusido, L. Romeral, J. A. Ortega, J. A. Rosero, and A. Garcia Espinosa, "Fault detection in induction machines using power spectral density in wavelet decomposition," IEEE Trans. Ind. Electron., Vol. 55, No. 2, pp. 633-643, Feb. 2008. https://doi.org/10.1109/TIE.2007.911960
  19. S. H. Kia, H. Henao, and G.-A. Capolino. "Diagnosis of broken-bar fault in induction machines using discrete wavelet transform without slip estimation," IEEE Trans. Ind. Appl., Vol. 45, No. 4, pp. 1395-1404, Jul./Aug. 2009. https://doi.org/10.1109/TIA.2009.2018975
  20. C. H. De Angelo, G. R. Bossio, S. J. Giaccone, and M. I. Valla, "Online model-based stator-fault detection and identification in induction motors," IEEE Trans. Ind. Electron., Vol. 56, No. 11, pp. 4671-4680, Nov. 2009. https://doi.org/10.1109/TIE.2009.2012468
  21. J. Yun, K. Lee, K.-W. Lee, S. B. Lee, and J.-Y. Yoo, "Detection and classification of stator turn faults and high-resistance electrical connections for induction machines," IEEE Trans. Ind. Appl., Vol. 45, No. 2, pp. 666-675, Mar./Apr. 2009. https://doi.org/10.1109/TIA.2009.2013557
  22. J. H. Jung, J. J. Lee, and B. H. Kown, "Online diagnosis of induction motors using MCSA," IEEE Trans. Ind. Electron., Vol. 53, No. 6, pp. 1842-1852, Dec. 2006. https://doi.org/10.1109/TIE.2006.885131
  23. S.H. Kia, H. Henao, and G.-A. Capolino. "A high-resolution frequency estimation method for three-phase induction machine fault detection," IEEE Trans. Ind. Eletron., Vol. 54, No. 4, pp. 2305-2314, Aug. 2007. https://doi.org/10.1109/TIE.2007.899826
  24. M. Moradian, M. Ebrahimi, M. Danesh, and M. bayat, "Detection of broken bars in induction motors using a neural network," Journal of Power Electronics, Vol. 6, No. 4, pp. 245-252, Jul. 2006.
  25. M. S. Ballal, H. M. Suryawanshi, and M. K. Mishra, "Detection of incipient faults in induction motors using FIS, ANN and ANFIS techniques," Journal of Power Electronics, Vol. 8, No. 2, pp. 181-191, Apr. 2008.
  26. F. Zidani, D. Diallo, M. E. H. Benbouzid, and R. Nait-Said, "A fuzzy-based approach for the diagnosis of fault modes in a voltage-fed PWM inverter induction motor drive," IEEE Trans. Ind. Electron., Vol. 55, No. 2, pp. 586-593, Feb. 2008. https://doi.org/10.1109/TIE.2007.911951
  27. M. Bouzid, G. Champenois, N. M. Bellaaj, L. Signac, and K. Jelassi, "An effective neural approach for the automatic location of stator interturn faults in induction motor," IEEE Trans. Ind. Electron., Vol. 55, No. 12, pp. 4277-4289, Dec. 2008. https://doi.org/10.1109/TIE.2008.2004667
  28. G. Didier, E. Ternisien, O. Caspary, and H. Razik, "A new approach to detect broken rotor bars in induction machines by current spectrum analysis," Mechanical Systems and Signal Processing, Vol. 21, No. 2, pp. 1127-1142, Feb. 2007. https://doi.org/10.1016/j.ymssp.2006.03.002
  29. R. Supangat, N. Ertugrul, W. L. Soong, D. A. Gray, C. Hansen, and J. Grieger, "Detection of broken rotor bars in induction motor using starting-current analysis and effects of loading," lEE Proc. Electric Power Applications, Vol. 153, No. 6, pp. 848-855, Nov. 2006.
  30. T. M. Wolbank, P. Nussbaumer, H. Chen, P. E. Macheiner, "Monitoring of rotor bar defects in inverter-fed induction machines at zero load and speed," to appear in IEEE Trans. Ind. Electron.
  31. I. D. Lomax, "Assessment of induction motor cage fatigue life," 5th Int. Conf. Electrical Machines and Drives, pp. 281-284, 1991.
  32. T. Albers and A. H. Bonnett, "Motor temperature considerations for pulp and paper mill applications," IEEE Trans. Ind. Appl., Vol. 38, No. 6, pp. 1701-1713, Nov./Dec. 2002. https://doi.org/10.1109/TIA.2002.805574
  33. G. Donner, B. K. Oakes, and S. T. Evon, "Motor primer-Part III," IEEE Trans. Ind. Appl., Vol. 39, No. 5, pp. 1467-1474, Sep./Oct. 2003. https://doi.org/10.1109/TIA.2003.816557
  34. J. B. Danilevich, V. N. Antipov, I. Y. Kruchinina, and Y. P. Khozikov, "Design considerations of submersible unprotected solid-rotor induction motor," 18th Int. Conf. Electrical Machines, pp. 1-4, 2008.
  35. A. H. Bonnett and G. C. Soukup, "Rotor failures in squirrel cage induction motors," IEEE Trans. Ind. Appl., Vol. 22, No. 6, pp. 1165-1173, Nov./Dec.1986.
  36. J. H. Jung and B. H. Kown, "Corrosion model of a rotor-bar-under-fault progress in induction motors," IEEE Trans. Ind. Electron., Vol. 53, No. 6, pp. 1829-1841, Dec. 2006. https://doi.org/10.1109/TIE.2006.885133

피인용 문헌

  1. Detection of Rotor Bar Faults in Field Oriented Controlled Induction Motors vol.12, pp.6, 2012, https://doi.org/10.6113/JPE.2012.12.6.982