• Title/Summary/Keyword: 3-Dimensional Free-Surface Waves

Search Result 45, Processing Time 0.025 seconds

Experimental and Numerical Study on the Characteristics of Free Surface Waves by the Movement of a Circular Cylinder-Shaped Submerged Body in a Single Fluid Layer

  • Jun-Beom Kim;Eun-Hong Min;Weoncheol Koo
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.89-98
    • /
    • 2023
  • Analyzing the interactions of free surface waves caused by a submerged-body movement is important as a fundamental study of submerged-body motion. In this study, a two-dimensional mini-towing tank was used to tow an underwater body for analyzing the generation and propagation characteristics of free surface waves. The magnitude of the maximum wave height generated by the underwater body motion increased with the body velocity at shallow submerged depths but did not increase further when the generated wave steepness corresponded to a breaking wave condition. Long-period waves were generated in the forward direction as the body moved initially, and then short-period waves were measured when the body moved at a constant velocity. In numerical simulations based on potential flow, the fluid pressure changes caused by the submerged-body motion were implemented, and the maximum wave height was accurately predicted; however, the complex physical phenomena caused by fluid viscosity and wave breaking in the downstream direction were difficult to implement. This research provides a fundamental understanding of the changes in the free surface caused by a moving underwater body.

Numerical Calculation of the free-Surface Flows around a Submerged Body (잠수체 주위 자유표면 유동의 수치계산)

  • 김용직;하영록;홍사영
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.2
    • /
    • pp.11-20
    • /
    • 2003
  • In this paper, the high-order spectral/boundary-element method is developed to calculate the 3-dimensional water waves generated by a submerged body. This method is one of the most efficient numerical methods by which the nonlinear gravity waves can be simulated Tn time-domain. Three-dimensional free-surface flows generated by a submerged sphere which is moving under the free-surface are calculated. Through example calculations, nonlinear effects on free-surface profiles and hydrodynamic forces are shown. Comparisons with others' results show good agreements.

Lift/Drag Prediction of 3-Dimensional WIG Moving Above Free Surface

  • Kwag, Seung-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.384-391
    • /
    • 2001
  • The aerodynamic effects of a 3-dimensional Wing in Ground Effect (WIG) which moves above the free surface has been numerically investigated via finite difference techniques. The air flow field around a WIG is analyzed by a Marker & Cell (MAC) based method, and the interactions between WIG and the free surface are studied by the pressure distributions on the free surface. Waves are generated by the surface pressure distribution, and a Navier-Stokes solver has been employed, to include the nonlinearities in the free surface conditions. The pressure values Cp and lift/drag ratio are reviewed by changing the height/chord ratio. In the present computations a NACA0012 airfoil with a span/chord ratio of 3.0 are treated. Through computational results, it is confirmed that the free surface can be treated as a rigid wavy wall.

  • PDF

Linear Spectral Method for Simulating the Generation of Regular Waves by a Moving Bottom in a 3-dimensional Space (3차원 공간에서 바닥의 움직임에 의한 규칙파의 생성을 모의할 수 있는 선형 스펙트럼법)

  • Jae-Sang Jung;Changhoon Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.2
    • /
    • pp.70-79
    • /
    • 2024
  • In this study, we introduce a linear spectral method capable of simulating wave generation and transformation caused by a moving bottom in a 3-dimensional space. The governing equations are linear dynamic free-surface boundary conditions and linear kinematic free-surface boundary conditions, which are solved in Fourier space. Solved velocity potential and free-surface displacement should satisfy continuity equation and kinematic bottom boundary condition. For numerical analysis, a 4th order Runge-Kutta method was utilized to analyze the time integral. The results obtained in Fourier space can be converted into velocity potential and free-surface displacement in a real space using inverse Fourier transform. Regular waves generated by various types of moving bottoms were simulated with the linear spectral method. Additionally, obliquely generated regular waves using specified bottom movements were simulated. The results obtained from the spectral method were compared to analytical solutions, showing good agreement between the two.

Estimation of Large Amplitude Motions and Wave Loads of a Ship Advancing in Transient Waves by Using a Three Dimensional Time-domain Approximate Body-exact Nonlinear 2nd-order BEM (3 차원 시간영역 근사비선형 2 차경계요소법에 의한 선체의 대진폭 운동 및 파랑하중 계산)

  • Hong, Do-Chun;Hong, Sa-Young;Sung, Hong-Gun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.291-305
    • /
    • 2010
  • A three-dimensional time-domain calculation method is of crucial importance in prediction of the motions and wave loads of a ship advancing in a severe irregular sea. The exact solution of the free surface wave-ship interaction problem is very complicated because of the essentially nonlinear boundary conditions. In this paper, an approximate body nonlinear approach based on the three-dimensional time-domain forward-speed free-surface Green function has been presented. The Froude-Krylov force and the hydrostatic restoring force are calculated over the instantaneous wetted surface of the ship while the forces due to the radiation and scattering potentials over the mean wetted surface. The time-domain radiation and scattering potentials have been obtained from a time invariant kernel of integral equations for the potentials which are discretized according to the second-order boundary element method (Hong and Hong 2008). The diffraction impulse-response functions of the Wigley seakeeping model advancing in transient head waves at various Froude numbers have been presented. A simulation of coupled heave-pitch motion of a long rectangular barge advancing in regular head waves of large amplitude has been carried out. Comparisons between the linear and the approximate body nonlinear numerical results of motions and wave loads of the barge at a nonzero Froude number have been made.

An Analytical Study of Regular Waves Generated by Bottom Wave Makers in a 3-Dimensional Wave Basin (3차원 조파수조에서 바닥 조파장치에 의해 재현된 규칙파에 대한 해석적 연구)

  • Jung, Jae-Sang;Lee, Changhoon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.4
    • /
    • pp.93-99
    • /
    • 2022
  • Analytical solutions for regular waves generated by bottom wave makers in a 3-dimensional wave basin were derived in this study. Bottom wave makers which have triangular, rectangular and combination of two shapes were adopted. The 3-dimensional velocity potential was derived based on the linear wave theory with the bottom moving boundary condition, kinematic and dynamic free surface boundary conditions in a wave basin. Then, analytical solutions of 3-dimensional particle velocities and free surface displacement were derived from the velocity potential. The solutions showed physically valid results for regular waves generated by bottom wave makers in a wave basin. The analytical solution for obliquely propagating wave generation from bottom wave maker which works like a snake was also derived. Numerical results of the solution agree well with theoretically predicted results.

A Study of Numerical Wave Tank for 3-Dimensional Free Surface Wave Simulation (3차원 자유표면파 모사를 위한 수치 파수조에 관한 연구)

  • Ha, Y.R.;Kim, Y.J.
    • Journal of Power System Engineering
    • /
    • v.15 no.6
    • /
    • pp.27-34
    • /
    • 2011
  • The increasing capabilities of the computers enable us to utilize various numerical schemes for the time-domain simulations concerned with 3-dimensional free-surface wave problems. There are still difficulties to solve such kind of problems, however. That's because long time simulations with large computational domain are needed in time-domain analysis. So, we need faster and more efficient numerical schemes to get the solutions practically for these problems. In this paper, a high-order spectral/boundary-element method is used for the numerical investigation of physics involved in wave-body interaction. This method is one of the most efficient numerical methods by which the nonlinear gravity waves can be simulated and hydrodynamic forces also can be calculated in time-domain. To get the robust study in these topics, various numerical tests are performed and compared with others' works.

A numerical simulation method for the flow around floating bodies in regular waves using a three-dimensional rectilinear grid system

  • Jeong, Kwang-Leol;Lee, Young-Gill
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.3
    • /
    • pp.277-300
    • /
    • 2016
  • The motion of a floating body and the free surface flow are the most important design considerations for ships and offshore platforms. In the present research, a numerical method is developed to simulate the motion of a floating body and the free surface using a fixed rectilinear grid system. The governing equations are the continuity equation and Naviere-Stokes equations. The boundary of a moving body is defined by the interaction points of the body surface and the centerline of a grid. To simulate the free surface the Modified Marker-Density method is implemented. Ships advancing in regular waves, the interaction of waves by a fixed circular cylinder array and the response amplitude operators of an offshore platform are simulated and the results are compared with published research data to check the applicability. The numerical method developed in this research gives results good enough for application to the initial design stage.

Nonlinear Motion for an Elliptic Cylinder under Free Surface (자유표면 아래의 타원형 실린더에 대한 비선형 운동)

  • 이호영;임춘규
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.4
    • /
    • pp.38-44
    • /
    • 2004
  • The motion response analysis of a submerged elliptic cylinder in waves is presented and the elliptic cylinder is a simplification of the section of submarine in this paper. The method is based on boundary integral method and two-dimensional 3 degree motions are calculated in regular harmonic waves. The fully nonlinear free surface boundary condition is assumed in an numerical domain and this solution is matched along an assumed boundary as a linear solution composed of transient Green function, The large amplitude motions of an elliptic cylinder are directly simulated and effects of wave frequency, wave amplitude and the distance from buoyancy center to gravity center are discussed.

Effect of natural frequency modes on sloshing phenomenon in a rectangular tank

  • Jung, Jae Hwan;Yoon, Hyun Sik;Lee, Chang Yeol
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.3
    • /
    • pp.580-594
    • /
    • 2015
  • Liquid sloshing in two-dimensional (2-D) and three-dimensional (3-D) rectangular tanks is simulated by using a level set method based on the finite volume method. In order to examine the effect of natural frequency modes on liquid sloshing, we considered a wide range of frequency ratios ($0.5{\leq}fr{\leq}3.2$). The frequency ratio is defined by the ratio of the excitation frequency to the natural frequency of the fluid, and covers natural frequency modes from 1 to 5. When fr = 1, which corresponds to the first mode of the natural frequency, strong liquid sloshing reveals roof impact, and significant forces are generated by the liquid in the tank. The liquid flows are mainly unidirectional. Thus, the strong bulk motion of the fluid contributes to a higher elevation of the free surface. However, at fr = 2, the sloshing is considerably suppressed, resulting in a calm wave with relatively lower elevation of the free surface, since the waves undergo destructive interference. At fr = 2, the lower peak of the free surface elevation occurs. At higher modes of $fr_3$, $fr_4$, and $fr_5$, the free surface reveals irregular deformation with nonlinear waves in every case. However, the deformation of the free surface becomes weaker at higher natural frequency modes. Finally, 3-D simulations confirm our 2-D results.