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Abstract 

A three-dimensional time-domain calculation method is of crucial importance in 

prediction of the motions and wave loads of a ship advancing in a severe irregular sea. 

The exact solution of the free surface wave-ship interaction problem is very 

complicated because of the essentially nonlinear boundary conditions. In this paper, 

an approximate body nonlinear approach based on the three-dimensional time-

domain forward-speed free-surface Green function has been presented. The Froude-

Krylov force and the hydrostatic restoring force are calculated over the instantaneous 

wetted surface of the ship while the forces due to the radiation and scattering 

potentials over the mean wetted surface. The time-domain radiation and scattering 

potentials have been obtained from a time invariant kernel of integral equations for the 

potentials which are discretized according to the second-order boundary element 

method (Hong and Hong 2008).  
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The diffraction impulse-response functions of the Wigley seakeeping model 

advancing in transient head waves at various Froude numbers have been presented. A 

simulation of coupled heave-pitch motion of a long rectangular barge advancing in 

regular head waves of large amplitude has been carried out. Comparisons between the 

linear and the approximate body nonlinear numerical results of motions and wave 

loads of the barge at a nonzero Froude number have been made. 

※Keywords: Time-Domain Approximate Body Nonlinear Ship Motion and Wave Loads (시간영역 

근사비선형 선체운동 및 파랑하중), Forward-Speed Diffraction Impulse-Response Function (전진

속도 충격응답함수), Three-Dimensional Time-Domain Forward-Speed Free-Surface Green 

Function (3DTFFG: 3 차원 시간영역 전진속도 자유표면 그린함수), Time-Domain Green Integral 

Equation (시간영역 Green 적분방정식), Forward-Speed Radiation Memory Function (전진속도 

운동이력함수), 2nd Order Boundary Element Method (2 차경계요소법)  

 

1. INTRODUCTION 

The three-dimensional time-domain free-

surface Green function under integral form, 

associated with a point source in arbitrary 

motion has been presented by Stoker (1957). 

Liapis and Beck (1985) have presented the 

Green integral equation (also referred to as 

source and normal doublet distribution method) 

for the radiation problem of a ship advancing 

with a constant forward speed using a three-

dimensional time-domain forward-speed 

free-surface Green function (hereinafter 

referred to as 3DTFFG) approximated by a 

series obtained by using the principle of 

stationary phase. King et al. (1988) have 

shown the added mass and wave-damping 

coefficients obtained by Fourier transform of 

the time-domain numerical results. Bingham 

et al. (1993) have presented the memory 

functions as well as the impulse response 

functions of ships using 3DTFFG 

approximated by Newman (1992). The above 

mentioned methods are known as the 

impulse-response function (hereinafter also 

referred to as IRF) based hydrodynamic 

formulation which are linear and presented in 

the moving coordinate system fixed in the 

mean position of the ship advancing with 

constant speed of unidirectional velocity.  

 

Lin and Yue (1990) have presented a three-

dimensional time domain approach (LAMP) 

formulated in an earth-fixed coordinate 

system in order to predict the large-amplitude 

arbitrary motions and wave loads of a ship in a 

seaway. In their approach, the body boundary 

condition is satisfied on the instantaneous 

wetted surface while the free surface condition 

is linearized. Their work has further been 

developed to yield a multi-level code system 

for linear and nonlinear solutions (Lin et al. 

1999).  

 

All the above mentioned methods make use 

of the free-surface Green function which 

satisfies the linearized free-surface condition 

and the constant panel method are employed 

to obtain numerical solutions. For purely linear 

problems, using LAMP is more expensive than 
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using IRF based hydrodynamic formulation 

since the integral equation is solved at every 

time-step in the former while the kernel of the 

integral equation is time invariant in the latter.  

 

In the present paper, the radiation-diff-

raction potential boundary value problem is 

solved by using the Green integral equation 

associated with 3DTFFG approximated by 

Newman (1992) under the assumption of 

Neumann-Kelvin linearization. The integral 

equations are discretized according to a 

second-order boundary element method. The 

Green integral equation at each time-step is 

solved following the time-stepping procedure 

presented by Beck and Liapis (1987). The 

time-domain equation of motion is solved at 

every time step by using the body-exact 

Froude-Krylov and restoring forces and 

moments. 
 

2. FORMULATION 

Assuming that the body advances with a 

constant speed U in the positive x-direction 

accompanying a small amplitude six-degree-

of-freedom motion, the potential can be 

expressed in a moving coordinate system 

( , , )x y z  attached to the mean position of the 

body with the origin in the waterplane of the 

body and the z-axis vertically upwards as 

follows. 
6

1
( , ) ( ) ( , )W k

k
P t U x P P t

=

Φ = − +Φ + Φ∑     (1) 

where –Ux is the free-stream potential, WΦ  

the steady disturbance potential due to the 

constant forward motion of the body and 

( 1,2,,,6)k kΦ =  the radiation potentials due to 

the six-degree-of-freedom motion. Adopting 

the Neumann-Kelvin linearization, the 

linearized body boundary condition for the 

unsteady potential, ( 1,2,,,6)k kΦ =  can be 

expressed as follows in the moving coordinate 

system. 

 

6,...,2,1,on    =+=
∂
Φ∂ kSxmxn
n kkkk

k     ( 2 )  

6,...,2,1,on    =+=
∂
Φ∂ kSxmxn
n kkkk

k  

 

1 2 3 4 5 6( , , ), ( , , )On n n n n n= × =n r n              (3) 

 

3 2(0, 0, 0, 0, , )Un Un= −m                   (4) 

 

where, n and S denote the normal vector and 

the wetted surface at their mean positions 

respectively, rO the displacement vector with 

respect to the center of rotation O,, 

,( 1,2,,,6)kx k =  the six components of the 

linear and angular displacement of the body 

from its mean position and the overdot the 

time derivative. The initial and boundary 

conditions for kΦ are as shown in Liapis and 

Beck (1985). Representing kΦ  by the 

following convolution 

 

∫ −=Φ
t

kkk dtxt
0

)()()( τττφ      (5) 

 

and applying the body boundary condition due 

to an impulsive body’s velocity  

 

( ) ( ) ( )k k kt n t m H t on Sφ δ⋅∇ = +n       (6) 

 

kφ  can be written as follows 

 

( , ) ( ) ( ) ( ) ( ) ( , )k k k kQ t Q t Q H t Q tφ ϕ δ µ ψ= + +       (7) 

 

The ( )k Qϕ , ( )k Qµ  and ( , )k Q tψ  can be 

obtained as solutions of the time-domain 

Green integral equations (also referred to as 

Volterra-type integro-differential equation) as 

shown in Hong and Hong (2008). 

The diffraction problem for a body advancing 

with a constant speed U in transient waves is 

analogous to the radiation problem. In this 

case, the total potential is the diffraction 
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potential DΦ , the sum of the incident wave 

potential 0Φ  and the scattering potential 7Φ . 

 

0 7( , ) ( , ) ( , )D P t P t P tΦ =Φ +Φ      (8) 

 

In this paper, the diffraction problem is 

formulated in terms of the time-derivative of 

the potential , ( , ) = ( , ) /  k t kP t P t tΦ ∂Φ ∂ . The 

body boundary condition is as follows. 

 

7, 0,t t on S
n n

∂Φ ∂Φ
= −

∂ ∂
        (9) 

 

Here, it is assumed that the incident waves in 

an earth-fixed cartesian coordinate system 

( ', ', ')x y z  take the following form. 

 

0 0 0
0

2
0 0 0 0

( ', ', ', ) Re{ ( ) exp[ '

( 'cos 'sin ) ]}, /

gx y z t iA k z

ik x y i t k g

ϕ ω
ω

β β ω ω

=

− + + =

    (10) 

 

where A(ω0) denotes the amplitude of this 

wave train whose absolute frequency is ω0 and 

β the angle between the positive x’-axis and 

the wave propagation direction. When the 

incident waves are given as an arbitrary 

impulsive wave elevation, the ( 0,7)k kΦ =  can 

be presented by the following convolution. 

 

( ) ( ) ( ) , 0,7k k It t d kφ τ ζ τ τ
∞

−∞
Φ = − =∫           (11) 

 

where, ( )I tζ  is the wave elevation at a reference 

point fixed with respect to the earth-fixed 

cartesian coordinate system ( ', ', ')x y z , 7( , )P tφ  

the canonical scattering potential and 0( , )P tφ  

the kernel function representing the impulsive 

incident wave potential when ( )tζ  is given as 

the delta function ( )tδ . The incident wave 

elevation should be measured at the reference 

point.  

The time-derivative of 0( , )P tφ  has been 

presented in the moving coordinate system 

( , , )x y z  as follows (Gong 1987). 

 

3
cos ( / 2 sin )

0,
0

/ 2

( , , , ) Re{
4

e [ ( ) ]}

i
t

i

gx y z t e e
r

rfc i sign t e

γ θ θ γ θ

θ

φ
π

γ

− −= −
  (12) 

 

where erfc( ) denotes the complementary 

complex error function. It should be noted that 

Eq.(12) is not applicable in case the waves are 

incident from abaft the beam of a ship with 

forward speed. In this case, the initial 

condition for the present diffraction potential 

cannot be satisfied and the encounter 

frequency ω is not a single-valued function of 

the absolute frequency ω0.  

 

0 0 cos , / 2Ukω ω β β π= − <                (13) 

 

The diffraction impulse response functions in 

following seas can be obtained by using the 

method presented by Korsmeyer and Bingham 

(1998) 

 Substituting Eq.(11) into Eq.(9), we have 
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Applying the Green theorem to 7,tφ , the time 

derivatives of the canonical scattering potential 

7φ  and the Green function G  expressed in the 

moving coordinate system presented by 

Newman (1992), the Green integral equation in 

the time-domain for 7,tφ  can be found as 

follows (Gong 1987).  

 

It should be noted that the kernel of Eq. (15) for 

7,tφ  is identical to the kernel of the integral 

equation for the time-domain radiation potentials 

presented in Liapis and Beck (1985). 

The integral equation (15) is discretized spatially 

by using a second-order boundary element 

method as shown in Hong and Hong (2008). The 

numerical integration in time has been carried by 

using the temporal discretization presented by 

Beck and Liapis (1987). 

 

3. APPROXIMATE BODY NONLINEAR 

EQUATIONS OF MOTION and WAVE 

LOADS 

Taking account of the Froude-Krylov and 

the hydrostatic restoring forces - generalized 

forces in the sense that they can include 

moments - calculated over the instantaneous 

wetted surface of the ship St while the forces 

due to the radiation and scattering potentials 

on the mean wetted surface S, the following 

equations of motion of a ship advancing in 

waves can be obtained as follows. 

 

6,...,2,1),()(

  )()(

)()()()[(

07
0

6

1

=+++=

−+

+++

∫

∑
=

jtFgCtX

xtKd

txctxbtxaM

jjjj

t

kjk

k
kjkkjkkjkjk

τττ  (16) 

 

The coefficients jkM denote the ship’s inertia 

matrix and jg  the coefficients due to the 

gravitational force applied on the mass of the 

moving body. The coefficients jka , jkb , jkc  

and the radiation memory functions Kjk are 

obtained as follows. 

 

j k k j
S

a n dSρ ϕ= ∫∫                               (17) 

 

( )k
j k k j

S

b U n dS
x
ϕρ µ ∂

= −
∂∫∫                      (18) 

 

k
j k j

S

c U n dS
x
µρ ∂

= −
∂∫∫

 

 (19) 

 
( , )( ) [ ( , ) ]k

j k k j
S

Q tK t Q t U n dS
x

ψρ ψ ∂
= −

∂∫∫          (20) 

 

As shown above, the hydrodynamic coefficients 

involving spatial derivatives have been obtained 

directly without using Stokes’theorem which is 

valid only for bodies that are wall-sided at the 

waterline. 

The 7 ( ),( 1,2,,,6)jX t j =  on the right-hand side of 

Eq.(16), are time-series of the six components 

of the scattering exciting forces due to a 

unidirectional incident wave with a heading angle 

β which can be obtained by convolution as 

follows 

 

7

( ) 1 4 cos /

( ) ( ) , 1,2,,,6

0 7

k
j

j I

X t U g

d K t j

for k and

ω β

τ τ ζ τ
∞

−∞

= −

− =

=
∫               (21) 

 

where ζI denotes the wave elevation at the 

earth-fixed reference point expressed in the 

moving coordinate system ( , , )x y z . 
0 ( ),( 1,2,,,6)jX t j =

 
for k=o in Eq.(16) denote the 

six components of the linear Froude-Krylov 

exciting forces. The Froude-Krylov and 
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scattering impulse-response functions, 0( )jK t

and 7 ( )jK t , can be obtained as follows. 

 

,
( , )( ) [ ( , ) ] ,

1,2,,,6, 0 7

k k
j k t j

S

Q tK t Q t U n dS
x

j for k and

φρ φ ∂
= − −

∂

= =

∫∫      (22) 

 

The linear diffraction impulse-response fun-

ctions KDj(t), (j=1,2,,6) are the sum of the 

Froude-Krylov and scattering impulse-response 

functions. 

The coefficients jC  and ( )jF t  denote the 

approximate body non-linear hydrostatic 

restoring and Froude-Krylov wave exciting 

forces respectively. They should be calculated 

at every time-step over the instantaneous 

wetted surface under the exact free surface of 

the incident wave. The incident wave profile 

may be given by a wave spectrum. In this 

study, computation of transient response of 

motions of a body advancing in a regular 

incident wave has been shown to clarify the 

present approximate body nonlinear method.  

 

00
0

0

0

( , , , ) Re

exp{ [( )cos ( )sin ]}

k z i t

I I

gx y z t e i e

ik x x y y

ωζ
ω

β β

Φ =

− − + −
       (23) 

 

where, ζ0 is the wave amplitude at a reference 

point ( , )I Ix y  expressed in the moving coordinate 

system ( , , )x y z . 

The wave elevation ζI at the earth-fixed reference 

point can be expressed as follows in the 

moving coordinate system ( , , )x y z  

 

0 0( , , ) cos{ [( )cos

( )sin ] }
I I

I

x y t k x x

y y t

ζ ζ β

β ω

= −

+ − −
          (24) 

 

The instantaneous position vector rt
M of a 

point M on the moving body can be expressed 

as follows. 

 

( , , , )t m
M M Ox y z t = + ×r r D+Θ r               (25) 

 

where rmM dnotes the position vector of the 

point M at its mean position and  

 
3 6

3
1 4

,k k k k
k k

x x −
= =

= =∑ ∑D e Θ e                (26) 

 

The instantaneous wetted surface should be 

determined at every time-step according as  

the relative height of the point M with respect 

to the incident wave elevation ζI is negative or 

not. 

 

0),,(),,,(),,,( 3 ≤−•= tyxtzyxtzyxz I
t
M

t
M ζer  

(27) 

 

Then, at every time-step, the approximate 

body non-linear hydrostatic restoring and 

Froude-Krylov wave exciting forces can be 

obtained as follows respectively.  

 

∫∫ =•−=
jS j

t
Mj jntzyxdSgtC 6,...,2,1,),,,()( 3erρ  

(28) 

( ) ( , , , ) , 1,2,,,6
j

t
j IS

F t dS p x y z t n jρ= =∫∫       (29) 

where 

0 0

0

( , , , ) exp[ ( , , , )]

cos{ [( )cos ( )sin ] }

t
I M

M I M I

p x y z t g k z x y z t

k x x y y t

ρ ζ

β β ω

=

− + − −
  

(30) 

It should be noted that the integration has 

been done at every time step over St , the 

instantaneous wetted surface of the ship. The 

equation of motion (16) can be solved by 

using Newmark-Beta time integrator. The six 
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components of the wave loads at a station 

can easily be obtained as follows. 

6,...,2,1,  )()(

)()()()[(

)()(

0

6

1

=−+

+++

+++=

∫

∑
=

jxtKd

txctxbtxaM

tFgCtXW

t

kjk

k
k

I
jkk

I
jkk

I
jk

I
jk

I
j

I
j

I
j

I
j

I
j

τττ

  (31) 

where the coefficients Ml
jk and gl

j denote 

respectively the inertia matrix and the 

gravitational force coefficients of the solid 

mass bounded by the aft end and the lth 

station of the ship. The superscript l of the 

other coefficients indicates that the integration 

is done over the wetted surface bounded by 

the aft end and the lth station of the ship  

 

4. NUMERICAL RESULTS AND DISCU-

SSIONS 

 

Numerical tests for the hydrodynamic forces 

have been done using the Wigley seakeeping 

model I (Journée 1992) defined by Eq. (32), 

advancing in transient head waves at various 

Froude numbers to show that the present 

numerical results of the diffraction impulse-

response functions compare favorably with the 

existing experimental and numerical results. 

2 4

2 2 8

2 4

2 / [1 0.8(2 / ) 0.2(2 / ) ]

[1 ( / )] ( / ) [1 ( / ) ]

[1 (2 / ) ] ,

6 , / 10, / 16

y B x L x L

z D z D z D

x L

L meters L B L D

= − −

− + −

−

= = =

        (32) 

where L, B and D are the length, breadth and 

draft of the Wigley model respectively. 

 

The mean wetted surface of the Wigley model 

is discretized as shown in Fig.1. The present 

time-domain numerical results are referred to 

as TiMoSBEM (Time-Domain Motion with 

Second-Order Boundary Element Method). 

Numerical results of the time-domain forward-

speed radiation potential can be found in 

Hong and Hong (2008) but the hydrodynamic 

coefficients have been recomputed by using 

Eqs.(17)-(20)  as mentioned earlier. 

 

 
Fig. 1 Second-order panel representation of  

the Wigley seakeeping model I 

 

 

Fig. 2 Heave diffraction impulse response 

functions of the Wigley model I, β=180 degs. 
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Fig. 3 Pitch diffraction impulse response 

functions of the Wigley model I, β=180 degs. 

 

Figs.2-3 show heave and pitch diffraction 

impulse response functions in regular head 

waves at Fn=0, 0.1, 0.2 and 0.3 obtained by 

using TiMoSBEM. The Froude number Fn is 

non-dimensionalized as follows. 

 

/nF U gL=                                (33) 

 

 

 
Fig. 4 Heave exciting force coefficients of 

Wigley model at Fn=0.2, β=180 degs 

 
Fig. 5 Pitch exciting moment coefficients of 

Wigley model at Fn=0.2, β=180 degs 

 

 

Fig. 6 Heave exciting force coefficients of 

Wigley model at Fn=0.3, β=180 degs 

 

In Figs.4-5, the frequency-domain heave and 

pitch exciting force coefficients of the Wigley 

model at Fn=0.2 calculated from the diffraction 

impulse response functions via Fourier transform 

have been compared with the same coefficients 

obtained from the SAMP forces and moment 

time histories as presented in Lin and Yue (1990). 

In Figs.4-5, comparisons with experimental 

results presented in Gerritsma (1988) have also 

been made.  
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In Figs.6-7, the frequency-domain heave and 

pitch exciting force coefficients of the Wigley 

model at Fn=0.3 calculated from the diffraction 

impulse response functions via Fourier transform 

have been compared with the experimental 

results presented in Journée (1992).  

 

 

Fig. 7 Pitch exciting moment coefficients of 

Wigley model at Fn=0.3, β=180 degs 

 

Overall agreement is satisfactory but the 

present calculations show smaller values. It 

may be due to numerical errors caused by 

both the spatio-temporal discretization and 

truncation of the Fourier integral. Also, it 

should probably be due to the viscous effects. 

 

A simulation of heave-pitch coupled motion of 

the Wigley seakeeping model advancing in 

regular head waves of unit amplitude has been 

carried out and presented in Hong et al. 

(2009). Numerical tests for the motions and 

wave loads have been done using a long 

rectangular barge model of uniform density 

having constant sectional area since it is easy 

to calculate its inertial and buoyancy forces.  

The barge advancing at Fn =0.1 in regular 

head waves has been taken into consideration. 

The principal particulars of the barge are given 

in Table 1. 

Table 1 Principal particulars of the barge 

L 6 m 
B  0.6 m 
H 0.8 m 

draft 0.4 m 
zG 0. m 
zB -0.2 m 

Roll radius of gyration 0.288 m 
Pitch radius of gyration 1.74 m 
Yaw radius of gyration 1.74m 

Displacement 1.44 m3 

 

The discretized view of the mean wetted 

surface of the barge is shown in Fig.8. The 

entire barge is symmetric with respect to the 

plane z=0. The surface above the mean free 

surface has also been discretized for the body-

nonlinear calculation.  

The heave-heave and pitch-pitch memory 

functions have been shown in Figs.9-10. 

Figs.11-12 show heave and pitch diffraction 

impulse response functions of the barge in 

regular head waves at Fn=0.1. The time 

histories of the linear heave and pitch Froude-

Krylov exciting forces for λ/L=1.15 at Fn=0.1 

have been calculated by two different method 

and presented in Figs.13-14. The curves 

noted by “Froude-Krylov by convolution” have 

been obtained by using Eq.(21) and the other 

by direct integration of the pressure over the 

mean wetted surface by using Eq.(29). The 
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agreement between them has been shown to 

be excellent.  

 

 

Fig. 8 Second-order panel representation of 

the mean wetted surface of the barge 

 

 

Fig. 9 Heave-heave memory function of the 

barge at Fn=0.1. 

 

The time histories of the scattering exciting 

forces have also been presented there. 

Figs.15-16 show the time histories of the 

nonlinear heave and pitch responses of the 

barge for various values of  ζ0 in regular head 

waves for λ/L=1.15 at Fn=0.1 together with the 

linear heave and pitch responses. The linear 

responses have been computed by using the 

linear restoring forces and the time-series of 

the diffraction exciting forces obtained by 

using the convolution of  the diffraction 

impulse-response functions KDj(t),(j=1,2,,6) 

following the procedure presented in Hong et 

al. (1998) and in Hong and Hong (2005). 

 

 

Fig. 10 Pitch-pitch memory function of the 

barge at Fn=0.1 

 

 

It has been shown that the linear heave and 

pitch RAOs of the barge agree very well with 

the nonlinear RAOs with ζ0=0.001 meters. It 

has also been shown that the heave and pitch 

RAOs of the barge become smaller as ζ0 

increases.  
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Fig. 11 Heave diffraction impulse response 

functions of the barge at Fn=0.1, β=180 degs. 

 

 

Fig. 12 Pitch diffraction impulse response 

functions of the barge at Fn=0.1, β=180 degs. 

 

Variations of the nonlinear vertical shear force 

and bending moment distributions of the 

barge in regular head waves at Fn=0.1 for λ

/L=1.15 with ζ0=0.2 meters have been shown 

in Figs.17-18 where nt denotes the number of 

time steps.  

 

Fig. 13 Time histories of linear Froude-Krylov 

and scattering heave exciting force of the 

barge at Fn=0.1, β=180, degs, λ/L=1.15 

 

 

 

Fig. 14 Time histories of linear Froude-Krylov 

and scattering pitch exciting moment of the 

barge at Fn=0.1, β=180, degs, λ/L=1.15 

 

The total number of time steps is 500 for the 

present numerical tests for the barge.Figs.19-

21 show the nonlinear vertical shear force and 

bending moment distributions of the barge for 

various values of  ζ0 in regular head waves for 

λ/L=1.15 at Fn=0.1 together with the linear 

shear force and bending moment distributions.  
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Fig. 15 Time histories of linear and nonlinear 

heave responses of the barge at Fn=0.1, 

β=180, degs, λ/L=1.15 

 

 

 

Fig. 16 Time histories of linear and nonlinear 

pitch responses of the barge at Fn=0.1, 

β=180, degs, λ/L=1.15 

 

In Fig.20, the non-dimensional linear bending 

moment and the nonlinear bending moment 

with ζ0=0.001 meters appear to be 50 times 

greater than the nonlinear bending moment 

with ζ0≥0.1 but  the real values of the former 

are 20 times smaller than the latter. 

 

Fig. 17 Variation of the nonlinear vertical shear 

force distributions of the barge at Fn=0.1, 

β=180, degs, λ/L=1.15, ζ0=0.2 m 

 

 

 

Fig. 18 Variation of the nonlinear vertical 

bending moment distributions of the barge at 

Fn=0.1, β=180, degs, λ/L=1.15, ζ0=0.2 m 

 

It has been shown that non-dimensional 

values of the linear vertical shear force and 

bending moment distributions of the barge 

agree very well with the nonlinear values with 

ζ0=0.001 meters. 
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Fig. 19 Linear and nonlinear vertical shear 

force distributions of the barge at Fn=0.1, 

β=180, degs, λ/L=1.15 

 

 

 

Fig. 20 Linear and nonlinear vertical bending 

moment distributions of the barge at Fn=0.1, 

β=180, degs, λ/L=1.15 

 

5. CONCLUSIONS 

In this paper, an approximate body nonlinear 

calculation method for the ship motion and wave 

loads has been presented. All computations are 

made on a personal computer. 

 

Fig. 21 Enlarged view of nonlinear vertical 

bending moment distributions of the barge at 

Fn=0.1, β=180, degs, λ/L=1.15 

 

The diffraction impulse-response functions 

of the Wigley seakeeping model I advancing in 

transient head waves at various Froude numbers 

have been presented. The frequency-domain 

coefficients of the wave exciting forces and 

moments obtained via Fourier transform of the 

diffraction impulse-response functions have 

been compared with the frequency-domain 

numerical and experimental results and the 

agreement between them has been found 

satisfactory.  

 

The wave exciting forces and moments 

acting on a ship advancing in plane progressive 

waves of arbitrary profile can easily be found 

from convolutions of the incident wave 

elevation and the diffraction impulse-response 

functions which may be obtained from the 

canonical diffraction potential pre-computed 

once for a Froude number. Comparisons 

between the linear and the approximate body 

nonlinear numerical results of motions and 

wave loads of the barge at a nonzero Froude 

number have been made. The comparisons 

show that the present approximate body 

nonlinear calculation method is consistent.   
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More numerical results using various hull 

forms will be presented in the near future. The 

present method can be used as a practical 

alternative to predict some significant large 

amplitude phenomena that the classical linear 

seakeeping calculation method cannot predict. 
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