• Title/Summary/Keyword: 3-D finite element models

Search Result 366, Processing Time 0.022 seconds

C* Based Life Assessment of 3D Crack at High Temperature (C*에 기초한 3차원 고온균열 수명평가)

  • Han, Tae-Soo;Yoon, Kee-Bong;Lee, Hyung-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.823-833
    • /
    • 2001
  • In recent years, the subject of remaining life assessment has drawn considerable attention in chemical plants, where various structural components typically operate at high temperature an pressure. Thus a life prediction methodology accounting for high temperature creep fracture is increasingly needed for the components. Critical defects in such structures are generally found in the form of semi-elliptical surface crack, and the analysis of which is consequently an important problem in engineering fracture mechanics. On this background, we first develop an auto mesh generation program for detailed 3-D finite element analyses of axial and circumferential semi-elliptical surface cracks in a piping system. A high temperature creep fracture parameter C-integral is obtained from the finite element analyses of generated 3-D models. Post crack growth module is further appended here to calculate the amount of crack growth. Finally the remaining lives of surface cracked pipes for various analytical parameters are assessed using the developed life assessment program.

FINITE ELEMENT ANALYSIS FOR DISCONTINUOUS MAPPED HEXA MESH MODEL WITH IMPROVED MOVING LEAST SQUARES SCHEME

  • Tezuka, Akira;Oishi, Chihiro;Asano, Naoki
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.373-379
    • /
    • 2001
  • There is a big issue to generate 3D hexahedral finite element (FE) model, since a process to divide the whole domain into several simple-shaped sub-domains is required before generating a continuous mesh with mapped mesh generators. In general, it is nearly impossible to set up proper division numbers interactively to keep mesh connectivity between sub-domains on a complicated arbitrary-shaped domain. If mesh continuity between sub-domains is not required in an analysis, this complicated process can be omitted. Element-free Galerkin method (EFGM) can accept discontinuous meshes, which only requires nodal information. However it is difficult to choose a reasonable influenced domain in moving least squares scheme with non-uniformly distributed nodes in discontinuous FE models. A new FE scheme fur discontinuous mesh is proposed in this paper by applying improved EFGM with some modification to derive FE approximated function in discontinuous parts. Its validity is evaluated on linear elastic problems.

  • PDF

Modeling and Controlling of Surface Defect Initiation and Growth in Groove Rolling (공형 압연에서의 표면흠 성장 모델링 및 제어 방법 연구)

  • Na, D.H.;Lee, Y.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.607-612
    • /
    • 2008
  • The groove rolling is a process that transforms the bloom or billet into a shape with circular section through a series of rolling. Inhibition of surface defect generation in groove rolling is a matter of great importance and therefore many research groups proposed a lot of models to find the location of surface defect initiation. In this study, we propose a model for maximum shear stress ratio over equivalent strain to catch the location of surface defect onset. This model is coupled with element removing method and applied to box groove rolling of POSCO No.3 Rod Mill. Results show that proposed model in this study can find the location of surface defect initiation during groove rolling when finite element analysis results is compared with experiments. The proposed criterion has been applied successfully to design roll grooves which inhibit the generation of surface defect.

Stent modeling and simulation of truss structure using SMA (형상기억합금 트러스 구조물을 이용한 스텐트의 설계 및 해석)

  • Yang, Seong-Pil;Kim, Sang-Haun;Cho, Mang-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.518-522
    • /
    • 2008
  • Recently, many patients related to heart disease have surgical operation by expanding a blood vessel to treat the angiostenosis. So far most angioplasties have been performed using balloon-dilative stent made of stainless steel. Some researchers are studying the stent made of shape memory alloy (SMA) to operate the angioplasty more easily. and there are several papers which introduce the angioplasty using SMA. However, most of the analysis models for stents are constructed using solid elements. So much computing time is required to solve the analysis model. In this study, we suggest the SMA stent model using 1D truss element which is much faster than stent model using 3D solid element. To represent non-linear behavior of SMA, we apply 1D SMA constitutive equation of Lagoudas'. Pseudo-elastic behavior of stent structures is presented as a numerical example.

  • PDF

Genetic algorithm optimization of precast hollow core slabs

  • Sgambi, Luca;Gkoumas, Konstantinos;Bontempi, Franco
    • Computers and Concrete
    • /
    • v.13 no.3
    • /
    • pp.389-409
    • /
    • 2014
  • Precast hollow core slabs (HCS) are technically advanced products in the precast concrete industry, widely used in the last years due to their versatility, their multipurpose potential and their low cost. Using three dimensional FEM (Finite Element Method) elements, this study focuses on the stresses induced by the prestressing of steel. In particular the investigation of the spalling crack formation that takes place during prestressing is carried out, since it is important to assure the appropriate necessary margins concerning such stresses. In fact, spalling cracks may spread rapidly towards the web, leading to the detachment of the lower part of the slab. A parametric study takes place, capable of evaluating the influence of the tendon position and of the web width on the spalling stress. Consequently, after an extensive literature review on the topic of soft computing, an optimization of the HCS is performed by means of Genetic Algorithms coupled with 3-D FEM models.

Age-related Geometric Effects on the Human Lumbar Spine by the Finite Element Method (유한 요소법을 이용한 나이에 따른 척추의 형상 및 구조변화의 효과)

  • Kim Y.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.3 s.61
    • /
    • pp.285-293
    • /
    • 2000
  • Age-related changes in the geometry of human lumbar spine would lead to changes of its mechanical behaviors. To investigate the effects of the geometric changes, no age-related changes in the material/mechanical properties were considered. Using the finite element method. two age-related models of lumbar spine segments (L3-L4) were constructed. The annulus of the models was modeled as laminate composite elements with 16 layers and 6 materials. The spinal stiffness and facet reaction of the lumbar spine increased with the age-related geometric changes in various combined loadings. Fiber and transverse tensile strains of the inner annulus. cancellous bone stress and end-plate stress decreased with the age-related geometric changes whereas fiber/layer compressive strains of the annulus. facet reaction. ligament reaction and end-plate rigidity increased. Consequently, it appears that in the normal age-related deterioration of discs, the age-related geometric change contributes to the increase of spinal stiffness (the decrease in range of the motion segment), preventing an excessive deformation of the disc.

  • PDF

Analysis of shallow footings rested on tensionless foundations using a mixed finite element model

  • Lezgy-Nazargah, M.;Mamazizi, A.;Khosravi, H.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.3
    • /
    • pp.379-394
    • /
    • 2022
  • Shallow footings usually belonged to the category of thick plate structures. For accurate analysis of thick plates, the contribution of out-of-plane components of the stress tensor should be considered in the formulation. Most of the available shallow footing models are based on the classical plate theories, which usually neglect the effects of the out-of-plane stresses. In this study, a mixed-field plate finite element model (FEM) is developed for the analysis of shallow footings rested on soil foundations. In addition to displacement field variables, the out-of-plane components of the stress tensor are also assumed as a priori unknown variables. For modeling the interaction effect of the soil under and outside of the shallow footings, the modified Vlasov theory is used. The tensionless nature of the supporting soil foundation is taken into account by adopting an incremental, iterative procedure. The equality requirement of displacements at the interface between the shallow footing and soil is fulfilled using the penalty approach. For validation of the present mixed FEM, the obtained results are compared with the results of 3D FEM and previous results published in the literature. The comparisons show the present mixed FEM is an efficient and accurate tool for solving the problems of shallow footings rested on subsoil.

An Analytical Study on the Simplification of the Shape of PS Tendon Through the Optimization of Material Properties (재료 물성 최적화를 통한 PS 강연선의 형상 단순화에 관한 해석적 연구)

  • Do-Yeon Kim;Il-Young Jang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.555-561
    • /
    • 2024
  • This paper derives material properties of steel bars that simulate the distribution of stress and strain of prestressed tendons used in Prestressed concrete(PSC) girders and presents an optimal material model. ABAQUS software was used to establish the 3D solid model of the PSC girder and strand wire rope for a PS(Prestressed) tendon. Then the model of steel wire rope was imported into the Isight interface plugin directly through the ABAQUS and the Data Matching. In ABAQUS, the contact pairs were established, the models were meshed, the constraints were applied to solve the finite element model and an axial tension of 0.5m/s was loaded to analyze the stress and deformation distributions in the normal working range of the PS strand wire rope. In Data Matching, classical experimental data is fitted to the optimal material properties through finite element analysis and multi-objective optimization. The results show that the steel bar with optimal material properties presents a similar linear area and stress distribution with the PS tendon.

Appropriate Boundary Conditions for Three Dimensional Finite Element Implicit Dynamic Analysis of Flexible Pavement (연성포장의 3차원 유한요소해석을 위한 최적 경계조건 분석)

  • Yoo, Pyeong-Jun;Al-Qadi, Imad L.;Kim, Yeon-Bok
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.213-224
    • /
    • 2008
  • Flexible pavement responses to vehicular loading, such as critical stresses and strains, in each pavement layer, could be predicted by the multilayered elastic analysis. However, multilayered elastic theory suffers from major drawbacks including spatial dimension of a numerical model, material properties considered in the analysis, boundary conditions, and ill-presentation of tire-pavement contact shape and stresses. To overcome these shortcomings, three-dimensional finite element (3D FE) models are developed and numerical analyses are conducted to calculate pavement responses to moving load in this study. This paper introduces a methodology for an effective 3D FE to simulate flexible pavement structure. It also discusses the mesh development and boundary condition analysis. Sensitivity analyses of flexible pavement response to loading are conducted. The infinite boundary conditions and time-dependent history of calculated pavement responses are considered in the analysis. This study found that the outcome of 3D FE implicit dynamic analysis of flexible pavement that utilizes appropriate boundary conditions, continuous moving load, viscoelastic hot-mix asphalt model is comparable to field measurements.

  • PDF

The PIC Bumper Beam Design Method with Machine Learning Technique (머신 러닝 기법을 이용한 PIC 범퍼 빔 설계 방법)

  • Ham, Seokwoo;Ji, Seungmin;Cheon, Seong S.
    • Composites Research
    • /
    • v.35 no.5
    • /
    • pp.317-321
    • /
    • 2022
  • In this study, the PIC design method with machine learning that automatically assigning different stacking sequences according to loading types was applied bumper beam. The input value and labels of the training data for applying machine learning were defined as coordinates and loading types of reference elements that are part of the total elements, respectively. In order to compare the 2D and 3D implementation method, which are methods of representing coordinate value, training data were generated, and machine learning models were trained with each method. The 2D implementation method is divided FE model into each face and generating learning data and training machine learning models accordingly. The 3D implementation method is training one machine learning model by generating training data from the entire finite element model. The hyperparameter were tuned to optimal values through the Bayesian algorithm, and the k-NN classification method showed the highest prediction rate and AUC-ROC among the tuned models. The 3D implementation method revealed higher performance than the 2D implementation method. The loading type data predicted through the machine learning model were mapped to the finite element model and comparatively verified through FE analysis. It was found that 3D implementation PIC bumper beam was superior to 2D implementation and uni-stacking sequence composite bumper.