Browse > Article
http://dx.doi.org/10.12989/sem.2022.81.3.379

Analysis of shallow footings rested on tensionless foundations using a mixed finite element model  

Lezgy-Nazargah, M. (Department of Civil Engineering, Faculty of Engineering, Hakim Sabzevari University)
Mamazizi, A. (Department of Civil Engineering, Faculty of Engineering, University of Kurdistan)
Khosravi, H. (Department of Civil Engineering, Faculty of Engineering, Hakim Sabzevari University)
Publication Information
Structural Engineering and Mechanics / v.81, no.3, 2022 , pp. 379-394 More about this Journal
Abstract
Shallow footings usually belonged to the category of thick plate structures. For accurate analysis of thick plates, the contribution of out-of-plane components of the stress tensor should be considered in the formulation. Most of the available shallow footing models are based on the classical plate theories, which usually neglect the effects of the out-of-plane stresses. In this study, a mixed-field plate finite element model (FEM) is developed for the analysis of shallow footings rested on soil foundations. In addition to displacement field variables, the out-of-plane components of the stress tensor are also assumed as a priori unknown variables. For modeling the interaction effect of the soil under and outside of the shallow footings, the modified Vlasov theory is used. The tensionless nature of the supporting soil foundation is taken into account by adopting an incremental, iterative procedure. The equality requirement of displacements at the interface between the shallow footing and soil is fulfilled using the penalty approach. For validation of the present mixed FEM, the obtained results are compared with the results of 3D FEM and previous results published in the literature. The comparisons show the present mixed FEM is an efficient and accurate tool for solving the problems of shallow footings rested on subsoil.
Keywords
mixed finite element; out-of-plane stresses; tensionless foundation; Vlasov model;
Citations & Related Records
Times Cited By KSCI : 16  (Citation Analysis)
연도 인용수 순위
1 Benferhat, R., Daouadji, T.H., Mansour, M.S. and Hadji, L. (2016), "Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations", Earthq. Struct., 10(6), 1429-1449. http://doi.org/10.12989/eas.2016.10.6.1429.   DOI
2 Buczkowski, R. and Torbacki, W. (2001), "Finite element modeling of thick plates on two parameter elastic foundation", Int. J. Numer. Anal. Meth. Geomech., 25, 1409-1427. https://doi.org/10.1002/nag.187.   DOI
3 Carrera, E. (2002), "Theories and finite elements for multilayered, anisotropic, composite plates and shells", Arch. Comput. Meth. Eng., 9(2), 87-140. https://doi.org/10.1007/BF02736649.   DOI
4 Celik, M. and Omurtag, M.H. (2005), "Determination of the Vlasov foundation parameters: quadratic variation of elasticity modulus using FE analysis", Struct. Eng. Mech., 19(6), 619-637. http://doi.org/10.12989/sem.2005.19.6.619.   DOI
5 Dong, J., Ma, X., Zhuge, Y. and Mills, J.E. (2017), "Shear buckling analysis of laminated plates on tensionless elastic foundations", Steel Compos. Struct., 24(6), 697-709. http://doi.org/10.12989/scs.2017.24.6.697.   DOI
6 Hachemi, H., Kaci, A., Houari, M.S.A., Bourada, M., Tounsi, A. and Mahmoud, S.R. (2017), "A new simple three-unknown shear deformation theory for bending analysis of FG plates resting on elastic foundations", Steel Compos. Struct., 25(6), 717-726. http://doi.org/10.12989/scs.2017.25.6.71.   DOI
7 Oner, E., Yaylaci, M. and Birinci, A. (2015), "Analytical solution of a contact problem and comparison with the results from FEM", Struct. Eng. Mech., 54(4), 607-622. https://doi.org/10.12989/sem.2015.54.4.607.   DOI
8 Pasternak, P.L. (1954), "New method of calculation for flexible substructures on two-parameter elastic foundation", Gosudarstvennoe Izdatelstoo, Literatury po Stroitelstvu i Architekture, Moskau, 1-56.
9 Lezgy-Nazargah, M. and Salahshuran, S. (2018), "A new mixed-field theory for bending and vibration analysis of multi-layered composite plate", Arch. Civil Mech. Eng., 18(3), 818-832. https://doi.org/10.1016/j.acme.2017.12.006.   DOI
10 Lo, K.H., Christensen, R.M. and Wu, E.M. (1977), "A higher order theory of plate deformation, Part 1: Homogeneous plates", ASME J. Appl. Mech., 44, 663-668. https://doi.org/10.1115/1.3424154.   DOI
11 Altekin, M. (2020), "Combined effects of material properties and boundary conditions on the large deflection bending analysis of circular plates on a nonlinear elastic foundation", Comput. Concrete, 25(6), 537-549. http://doi.org/10.12989/cac.2020.25.6.537.   DOI
12 Abbasi, S., Farhatnia, F. and Jazi, S.R. (2014), "A semi-analytical solution on static analysis of circular plate exposed to nonuniform axisymmetric transverse loading resting on Winkler elastic foundation", Arch. Civil Mech. Eng., 14(3), 476-488. https://doi.org/10.1016/j.acme.2013.09.007.   DOI
13 Addou, F.Y., Meradjah, M., Bousahla, A.A., Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S.R. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, 24(4), 347-367. http://doi.org/10.12989/cac.2019.24.4.347.   DOI
14 Adiyaman, G., Yaylaci, M. and Birinci, A. (2015), "Analytical and finite element solution of a receding contact problem", Struct. Eng. Mech., 54(1), 69-85. https://doi.org/10.12989/sem.2015.54.1.069.   DOI
15 Buczkowski, R. and Torbacki, W. (2009), "Finite element analysis of plate on layered tensionless foundation", Arch. Civil Eng., 56(3), 255-274. https://doi.org/10.2478/v.10169-010-0014-9.   DOI
16 Celik, M. and Saygun, A.A. (1999), "A method for the analysis of plates on a two-parameter foundation", Int. J. Solid. Struct., 36, 2891-2915. https://doi.org/10.1016/S0020-7683(98)00135-8.   DOI
17 Hetenyi, M. (1950), "A general solution for the bending of beams on an elastic foundation of arbitrary continuity", J. Appl. Phys., 21, 55-58. https://doi.org/10.1063/1.1699420.   DOI
18 Mullapudi, R. and Ayoub, A. (2010), "Nonlinear finite element modeling of beams on two-parameter foundations", Comput. Geotech., 37, 334-342. https://doi.org/10.1016/j.compgeo.2009.11.006.   DOI
19 Meftah, A., Bakora, A., Zaoui, F.Z., Tounsi A. and Bedia, E.A.A. (2017), "A non-polynomial four variable refined plate theory for free vibration of functionally graded thick rectangular plates on elastic foundation", Steel Compos. Struct., 23(3), 317-330. http://doi.org/10.12989/scs.2017.23.3.317.   DOI
20 Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexure motions of isotropic, elastic plates", ASME J. Appl. Mech., 18, 31-38. https://doi.org/10.1115/1.4010217.   DOI
21 Ozgan, K. and Daloglu, A.T. (2007), "Alternative plate finite elements for the analysis of thick plates on elastic foundations", Struct. Eng. Mech., 26(1), 69-86. https://doi.org/10.12989/sem.2007.26.1.069.   DOI
22 Ozgan, K. and Daloglu, A.T. (2008), "Effect of transverse shear strains on plates resting on elastic foundation using modified Vlasov model", Thin Wall. Struct., 46, 1236-1250. https://doi.org/10.1016/j.tws.2008.02.006.   DOI
23 Yaylaci, M., Adiyaman, E., Oner, E. and Birinci, A. (2020), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 76(3), 325-336. https://doi.org/10.12989/sem.2020.76.3.325.   DOI
24 Irgens, F. (1980), Continuum Mechanics, Springer-Verlag, Berlin.
25 Reddy, J.N. (1984), "A simple higher order theory for laminated composite plates", ASME J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719.   DOI
26 Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", ASME J. Appl. Mech., 12, A69- A77. https://doi.org/10.1115/1.4009435.   DOI
27 Lezgy-Nazargah, M. (2016), "A high-performance parametrized mixed finite element model for bending and vibration analyses of thick plates", Acta Mechanica, 227(12), 3429-3450. https://doi.org/10.1007/s00707-016-1676-4.   DOI
28 Teodoru, I. B. (2009), "Beams on elastic foundation the simplified continuum approach", Buletinul Institutului Politehnic din lasi. Sectia Constructii, Arhitectura, 55(4), 37.
29 Vallabhan, C.V.G., Straughan, W.T. and Das, Y.C. (1991), "Refned model for analysis of plates on elastic foundations", J. Eng. Mech., ASCE, 117(12), 2830-2844. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:12(2830).   DOI
30 Vlasov, B.F. (1957), "On the equation of theory of bending of plates", Izv. AN SSR, OMN, 12, 57-60.
31 Yaylaci, M., Eyuboglu, A., Adiyaman, G., Uzun Yaylaci, E., Oner, E. and Birinci, A. (2021a), "Assessment of different solution methods for receding contact problems in functionally graded layered mediums", Mech. Mater., https://doi.org/10.1016/j.mechmat.2020.103730   DOI
32 Yaylaci, M., Yayli M., Uzun Yaylaci E., Olmez, H. and Birinci, A. (2021b), "Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron", Struct. Eng. Mech., 78(5), 585-597. https://doi.org/10.12989/sem.2021.78.5.585.   DOI
33 Yaylaci, M. and Birinci, A. (2013), "The receding contact problem of two elastic layers supported by two elastic quarter planes. Struct. Eng. Mech., 48(2), 241-255. https://doi.org/10.12989/sem.2013.48.2.241.   DOI
34 Lezgy-Nazargah, M. and Meshkani, Z. (2018), "An efficient partial mixed finite element model for static and free vibration analyses of FGM plates rested on two-parameter elastic foundations", Struct. Eng. Mech., 66(5), 665-676. https://doi.org/10.12989/sem.2018.66.5.665.   DOI
35 Zenkour, A.M., Allam, M.N.M., Shaker, M.O. and Radwan, A.F. (2011), "On the simple and mixed first-order theories for plates resting on elastic foundations", Acta Mechanica, 220, 33-46. https://doi.org/10.1007/s00707-011-0453-7.   DOI
36 Vlasov, V.Z. and Leont'ev, N.N. (1960), Beams, Plates and Shells on Elastic Foundations, GIFML, Moskau.
37 Wang, Q., Shi, D. and Shi, X. (2016), "A modified solution for the free vibration analysis of moderately thick orthotropic rectangular plates with general boundary conditions, internal line supports and resting on elastic foundation", Meccanica, 51, 1985-2017. https://doi.org/10.1007/s11012-015-0345-3.   DOI
38 Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114, https://doi.org/10.12989/cac.2020.26.2.107.   DOI
39 Yaylaci, M., Adiyaman, E., Oner, E. and Birinci A. (2021c), "Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM", Comput. Concrete, 27(3), 199-210. https://doi.org/10.12989/cac.2021.27.3.199.   DOI