Browse > Article
http://dx.doi.org/10.12989/cac.2014.13.3.389

Genetic algorithm optimization of precast hollow core slabs  

Sgambi, Luca (Department of Civil and Environmental Engineering)
Gkoumas, Konstantinos (Department of Structural and Geotechnical Engineering, Sapienza University of Rome)
Bontempi, Franco (Department of Structural and Geotechnical Engineering, Sapienza University of Rome)
Publication Information
Computers and Concrete / v.13, no.3, 2014 , pp. 389-409 More about this Journal
Abstract
Precast hollow core slabs (HCS) are technically advanced products in the precast concrete industry, widely used in the last years due to their versatility, their multipurpose potential and their low cost. Using three dimensional FEM (Finite Element Method) elements, this study focuses on the stresses induced by the prestressing of steel. In particular the investigation of the spalling crack formation that takes place during prestressing is carried out, since it is important to assure the appropriate necessary margins concerning such stresses. In fact, spalling cracks may spread rapidly towards the web, leading to the detachment of the lower part of the slab. A parametric study takes place, capable of evaluating the influence of the tendon position and of the web width on the spalling stress. Consequently, after an extensive literature review on the topic of soft computing, an optimization of the HCS is performed by means of Genetic Algorithms coupled with 3-D FEM models.
Keywords
hollow core slabs; genetic algorithms; finite element method; optimization; soft computing; spalling; rotating crack model; prestressed reinforced concrete structures;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Sadeghi, N., Fayek, A.R. and Pedrycz, W. (2010), "Fuzzy monte carlo simulation and risk assessment in construction", Comput-Aided Civ. Inf., 25(4), 238-252.   DOI
2 Sgambi, L. (2004), "Fuzzy theory based approach for three-dimensional nonlinear analysis of reinforced concrete two-blade bridge piers", Comput. Struct., 82(13-14), 1067-1076.   DOI
3 Sgambi, L., Gkoumas, K. and Bontempi, F. (2012), "Genetic algorithms for the dependability assurance in the design of a long-span suspension bridge", Comput-Aided Civ. Inf., 27(9), 655-675.   DOI
4 Srinivas, V. and Ramanjaneyulu, K. (2007), "An integrated approach for optimum design of bridge decks using genetic algorithms and artificial neural networks", Adv. Eng. Softw., 38(7), 475-487.   DOI
5 Starossek, U. and Haberland, M. (2011), "Approaches to measures of structural robustness", Struct. Infrastruct. E., 7(7-8), 625-631   DOI   ScienceOn
6 Tagherouit, W.B., Bengassem, J. and Bennis, S. (2011), "A fuzzy expert system for prioritizing rehabilitation sewer networks", Comput. Aided Civ. Inf., 26(2), 146-152.   DOI
7 Vecchio F.J. and Collins M.P. (1986), "The modified compression field theory for reinforced concrete elements subjected to shear", J. Am. Concrete I., 83(2), 219-231.
8 Wang, K.C.P. and Li, Q. (2011), "Pavement smoothness prediction based on fuzzy and gray theories", Comput-Aided Civ. Inf., 26(1), 69-76.
9 Wilson, J.L., Robinson, A.J. and Balendra, T. (2008), "Performance of precast concrete load-bearing panel structures in regions of low to moderate seismicity", Eng. Struct., 30(7), 1831-1841.   DOI
10 Zadeh, L.A. (1965), "Fuzzy sets", Inform. Control, 8(3), 338-353.   DOI
11 Zadeh, L. (1997), "What is soft computing", Soft Comput., 1(1), 1.
12 Adeli, H. and Samant, A. (2000), "An adaptive conjugate gradient neural network-wavelet model for traffic incident detection", Comput-Aided Civ. Inf., 15(4), 251-260.   DOI   ScienceOn
13 Arangio, S. and Beck, J.L. (2011), "Bayesian neural networks for bridge integrity assessment", Struct. Control Hlth., 19(1), 3-21.
14 Adeli, H. and Kumar, S. (1995), "Concurrent structural optimization on a massively parallel supercomputer", J. Struct. Eng.- ASCE, 121(11), 1588-1597.   DOI
15 Adeli, H. and Park, H.S. (1995), "Optimization of space structures by neural dynamics", Neural Networks, 8(5), 769-781.   DOI
16 Baitsch, M. and Hartmann, D. (2006), Optimization of slender structures considering geometrical imperfections, Inverse Probl. Sci. Eng., 14(6), 623-637.   DOI
17 Al-Bazi, A. and Dawood, N. (2010), "Developing crew allocation system for precast industry using genetic algorithms", Comput-Aided Civ. Inf., 25(8), 581-595.   DOI
18 Arangio, S. and Bontempi, F. (2010), "Soft computing based multilevel strategy for bridge integrity monitoring", Comput-Aided Civ. Inf., 25(5), 348-362.   DOI   ScienceOn
19 Araujo, C.A.M., Loriggio, D.D. and Da Camara, J.M.N.N. (2011), "Anchorage failure and shear design of hollow-core slabs", Struct. Concrete, 12(2), 109-119.   DOI
20 BelHadj, A.N., Rhode-Barbarigos, L., PascualAlbi, A.A. and Smith, I.F.C. (2010), "Design optimization and dynamic analysis of a tensegrity-based footbridge", Eng. Struct., 30(11), 3650-3659.
21 Benitez, J. M. and Galvez, J.C. (2011), "Bond modelling of prestressed concrete during the prestressing force release", Mater. Struct., 44(1), 263-278.   DOI
22 Biondini, F., Bontempi, F. and Malerba, P.G. (2004a), Fuzzy reliability analysis of concrete structures, Comput.Struct., 82(13-14), 1033-1052.   DOI   ScienceOn
23 Biondini, F., Bontempi, F., Frangopol, D.M. and Malerba P.G. (2004b), "Reliability of material and geometrically non-linear reinforced and prestressed structures", Comput. Struct., 82(13-14), 1021-1031.   DOI   ScienceOn
24 Bocchini, P. and Frangopol, D.M. (2011), "A probabilistic computational framework for bridge network optimal maintenance scheduling", Reliab. Eng. Syst. Safe., 96(2), 332-349.   DOI
25 Bontempi, F., Gkoumas, K. and Arangio, S. (2008), "Systemic approach for the maintenance of complex structural systems", Struct. Infrastruct. E., 4(2), 77-94.   DOI   ScienceOn
26 Bogomolny, M. and Amir, O. (2012), "Conceptual design of reinforced concrete structures using topology optimization with elastoplastic material modeling", Int. J. Numer.Meth. Eng., 90(13), 1578-1597.   DOI
27 Bontempi, F., Biondini, F. and Malerba, P.G. (2000), "The search for structural schemes by using optimality criteria and soft computing techniques", Proceedings of Structural Morphology Conference, August 17-19, Delft, The Netherlands.
28 Buettner, D.R. and Becker, R.J. (1998), Manual for the Design of Hollow Core Slabs, (2nd Edition), Precast/Prestressed Concrete Institute, Chicago, IL.
29 Bontempi, F. and Malerba, P.G. (1997), "The role of softening in the numerical analysis of R.C. framed structures", Struct. Eng. Mech., 5(6), 785-801.   DOI
30 Boto-Giralda, D., Diaz-Pernas, F.J, Gonzalez-Ortega, D., Diez-Higuera, J.F., Anton-Rodriguez, M. and Martinez-Zarzuela, M. (2010), "Wavelet-based denoising for traffic volume time series forecasting with self-organizing neural networks", Comput-Aided Civ. Inf., 25(7), 530-545   DOI
31 Capuano, G., Della Bella, B., Della Bella, G., Ghittoni, P., Morandi, P. and Nilson, C. (2002), The hollow core floor. Design and applications, (1st edition), Manual ASSAP, Verona. Italy.
32 Ceravolo, R., De Stefano, A. and Sabia, D. (1995), "Hierarchical use of neural techniques in structural damage recognition", Smart Mater. Struct, 4(4), 270-280.   DOI
33 de Albuquerque, A.T., El Debs, M.K. and Melo, A.M.C. (2012), "A cost optimization-based design of precast concrete floors using genetic algorithms", Automat Constr., 22, 348-356.   DOI
34 Cheng, J. (2007), "Hybrid genetic algorithms for structural reliability analysis", Comput. Struct., 85(19-20), 1524-1533.   DOI
35 Collins, M.P. and Mitchell, D. (1980), "Shear and torsion design of prestressed and non-prestressed concrete beams" PCI J., 25(5), 32-100.
36 Cuenca, E. and Serna, P. (2013), Failure modes and shear design of prestressed hollow core slabs made of fiber-reinforced concrete, Compos Part B-Eng., 45(1), 952-964.   DOI
37 de Castilho, V.C., El Debs, M.K. and Nicoletti, M. do C. (2007), "Using a modified genetic algorithm to minimize the production costs for slabs of precast prestressed concrete joists", Eng. Appl. Artif. Intel., 20(4), 519-530.   DOI
38 de Castilho, V.C., Nicoletti, M. do C. and El Debs, M.K. (2005), "An investigation of the use of three selection-based genetic algorithm families when minimizing the production cost of hollow core slabs", Comput. Method.Appl. M., 194(45-47), 4651-4667.   DOI   ScienceOn
39 De Stefano, A., Sabia, D. and Sabia, L. (1999), "Probabilistic neural networks for seismic damage mechanisms prediction", Earthq. Eng. Struc., 28(8), 807-821.   DOI
40 del Coz Diaz, J.J., Garcia Nieto, P.J., ÁlvarezRabanal, F.P. and Martinez-Luengas, A.L. (2011), "Design and shape optimization of a new type of hollow concrete masonry block using the finite element method", Eng. Struct., 33(1), 1-9.   DOI
41 Elgabbas, F., El-Ghandour, A.A., Abdelrahman , A.A. and El-Dieb, A.S. (2010), "Different CFRP strengthening techniques for prestressed hollow core concrete slabs: Experimental study and analytical investigation", Compos. Struct., 92(2), 401-411.   DOI
42 Deng, L. and Cai, C.S. (2009), "Identification of parameters of vehicles moving on bridges", Eng. Struct., 31(10), 2474-2485.   DOI
43 Descamps, B., Coelho, R.F., Ney, L. and Bouillard, P. (2011), "Multicriteria optimization of lightweight bridge structures with a constrained force density method", Comput. Struct., 89(3-4), 277-284.   DOI
44 Dordoni, S., Malerba, P.G., Sgambi, L. and Manenti, S. (2010), "Fuzzy reliability assessment of bridge piers in presence of scouring", Proceedings of The Fifth Int. Conf. on Bridge Maintenance, Safety and Management (IABMAS'10), July 11-15, Philadelphia (USA).
45 EN 1168+A2 (2010), Precast concrete products. Hollow core slabs.
46 EN 1992-1-1.Eurocode 2-design of concrete structures. 2004.
47 Fairbairn, E.M.R., Silvoso, M.M., Toledo Filho, R.D., Alves, J.L.D. and Ebecken, N.F.F. (2004), "Optimization of mass concrete construction using genetic algorithms", Comput. Struct., 82(2-3), 281-299.   DOI   ScienceOn
48 Foster, S.J., Budiono, B. and Gilbert, R.I. (1996), "Rotating crack finite element model for reinforced concrete structures", Comput. Struct., 58(1), 43-50.   DOI   ScienceOn
49 Galvez, J.C., Benitez, J M., Tork, B., Casati, M.J. and Cendon, D.A. (2009), "Splitting failure of precast prestressed concrete during the release of the prestressing force", Eng. Fail. Anal., 16(8), 2618-2634.   DOI
50 Garavaglia, E., Pizzigoni, A., Sgambi, L., Basso, N. (2013), "Collapse behaviour in reciprocal frame structures", Struct. Eng. Mech., 46(4), 533-547.   DOI
51 Guan, H. (2005), "Strut-and-tie model of deep beams with web openings- An optimization approach", Struct. Eng. Mech., 19(4), 361-380.   DOI
52 Girhammar, U.A. and Pajari, M. (2008), "Tests and analysis on shear strength of composite slabs of hollow core units and concrete topping", Constr. Build. Mater., 22(8), 1708-1722.   DOI
53 Giuliani, L. (2012), "Structural safety in case of extreme actions", Special Issue on: "Performance and Robustness of Complex Structural Systems", Guest Editor Franco Bontempi, Int. J. Life Cycle Perf. Eng. (IJLCPE), in press (ISSN: 2043-8648).
54 Graf, W., Freitag, S., Kaliske, M. and Sickert, J.U. (2010), Recurrent neural networks for uncertain time-dependent structural behavior, Comput-Aided Civ. Inf., 25(5), 322-333.   DOI
55 Hegger, J., Roggendorf , T. and Kerkeni, N. (2009), "Shear capacity of prestressed hollow core slabs in slim floor constructions", Eng. Struct., 31(2), 551-559.   DOI
56 Hsu, T.T.C. (1988), "Softened truss model theory for shear and torsion", ACI Struct. J., 85(6), 624-635
57 Jafarkhani, R. and Masri, S.F. (2011), "Finite element model updating using evolutionary strategy for damage detection", Comput-Aided Civ. Inf., 26(3), 207-224.   DOI
58 Jiang, X. and Adeli, H. (2005), "Dynamic wavelet neural network for nonlinear identification of highrise buildings", Comput-Aided Civ. Inf., 20(5), 316-330.   DOI
59 Koh, B.H. and Dyke, S.J. (2007), "Structural health monitoring for flexible bridge structures using correlation and sensitivity of modal data", Comput. Struct., 85(3-4), 117-130.   DOI   ScienceOn
60 Kim, S.H., Yoon, C. and Kim, B.J. (2000), "Structural monitoring system based on sensitivity analysis and a neural network", Comput-Aided Civ. Inf., 15(4), 309-318.
61 Lam, D. (2002), "Composite steel beams with precast hollow core slabs: behaviour and design", Prog. Struct. Eng. Mater., 4(2), 179-185.   DOI   ScienceOn
62 Lam, D., Elliott, K.S., Nethercot, D.A. (2000), "Parametric study on composite steel beams with precast concrete hollow core floor slabs", J. Constr. Steel Res., 54(2), 283-304.   DOI   ScienceOn
63 Malekly, H., Mousavi, S.M. and Hashemi, H. (2009), "A fuzzy integrated methodology for evaluating conceptual bridge design", Expert Syst. Appl., 37(7), 4910-4920.
64 Liu, W., Gao, W.C., Sun, Y. and Xu, M.J. (2008), "Optimal sensor placement for spatial lattice structure based on genetic algorithms", J. Sound Vib., 317(1-2), 175-189.   DOI
65 Luo, Y. and Kang, Z. (2013), "Layout design of reinforced concrete structures using two-material topology optimization with drucker-prager yield constraints", Struct. Multidiscip. O., 47( 1), 95-110   DOI
66 Mathakari, S., Gardoni, P., Agarwal, P., Raich, A. and Haukaas, T. (2007), "Reliability-based optimal design of electrical transmission towers using multi-objective genetic algorithms", Comput. Aided Civ. Inf., 22(4), 282-292.   DOI
67 Moller, B., Graf, W. and Beer, M. (2003), "Safety assessment of structures in view of fuzzy randomness", Comput. Struct., 81(15), 1567-1582.   DOI
68 Petrini, F. and Bontempi, F. (2011), "Estimation of fatigue life for long span suspension bridge hangers under wind action and train transit", Struct. Infrastruct. E., 7(7-8), 491-507.   DOI
69 Orcesi, A.D. and Frangopol, D.M. (2011), "Optimization of bridge maintenance strategies based on structural health monitoring information", Struct. Saf., 33(1), 26-41.   DOI   ScienceOn
70 Pang X.B.D. and Hsu T.T.C. (1995), "Behaviour of reinforced concrete membrane elements in shear", ACI Struct. J., 92(6), 665-679.
71 Petrini, F., Li, H. and Bontempi, F. (2010), "Basis of design and numerical modeling of offshore wind turbines", Struct. Eng. Mech., 36(5), 599-624.   DOI
72 Pisanty, A. (1992), "The shear strength of extruded hollow-core slabs", Mater. Struct., 25(4), 224-230.   DOI
73 Pisanty, A. and Regan, P.E. (1991), "Direct assessment of the tensile strength of the web in prestressed precast hollow-core slabs", Mater. Struct., 24(6), 451-455.   DOI
74 Reuter, U. and Moller, B. (2010), "Artificial neural networks for forecasting of fuzzy time series", Comput-Aided Civ. Inf., 25(5), 363-374.   DOI
75 Sgambi, L. (2008), "Artificial intelligence: historical development and applications in civil engineering field", Proceedings of The Fourth Int. Conf. on Bridge Maintenance, Safety and Management (IABMAS'08), July 13-17, Seoul (Korea), ISBN 978 0 415 46844 2.
76 Rohani, S.M., Vafaeesefat, A., Esmkhani, M., Partovi, M. and Molladavoudi, H.R. (2013), "Composite locomotive frontend analysis and optimization using genetic algorithm", Struct. Eng. Mech., 47(5), 729-740.   DOI
77 Kim, Y., Langari, R. and Hurlebus, S. (2010), "Model-based multi-input, multi-output supervisory semiactive nonlinear fuzzy controller", Comput-Aided Civ. Inf., 25(5), 387-393.   DOI   ScienceOn
78 Chang, J., Buchanan, A.H., Dhakal, R.P. and Moss, P.J. (2008), "Hollow-core concrete slabs exposed to fire", Fire Mater., 32(6), 321-331.   DOI
79 Gaudenzi, P., Fantini, E., Koumousis, V.K. and Gantes, C.J. (1998), "Genetic algorithm optimization for the active control of a beam by means of PZT actuators", J. Intel. Mat. Syst. Str., 9(4), 291-300.   DOI   ScienceOn
80 Amir, O. (2013), "A topology optimization procedure for reinforced concrete structures", Comput. Struct., 114-115, 46-58.   DOI
81 Lee, Y. and Wei, C.H. (2010), "A Computerized feature selection using genetic algorithms to forecast freeway accident duration times", Comput-Aided Civ. Inf., 25(2), 132-148.   DOI
82 Tomas, A. and Marti, P. (2010), "Shape and size optimisation of concrete shells", Eng. Struct., 32(6), 1650-1658.   DOI   ScienceOn
83 Vlahogianni, E.I., Karlaftis, M.G. and Golias, J.C. (2007), "Spatio-temporal short-term urban traffic flow forecasting using genetically-optimized modular networks", Comput-Aided Civ. Inf., 22(5), 317-325.   DOI
84 Przemieniecki, J.S. (1968), Theory of Matrix Structural Analysis, New York: McGraw-Hill.