• Title/Summary/Keyword: 3-D data

Search Result 11,921, Processing Time 0.036 seconds

Variational Data Assimilation for Optimal Initial Conditions in Air Quality Modeling

  • Park, Seon-Ki
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.E2
    • /
    • pp.75-81
    • /
    • 2003
  • Variational data assimilation, which is recently introduced to the air quality modeling, is a promising tool for obtaining optimal estimates of initial conditions and other important parameters such as emission and deposition rates. In this paper. two advanced techniques for variational data assimilation, based on the adjoint and quasi-inverse methods, are tested for a simple air quality problem. The four-dimensional variational assimilation (4D-Var) requires to run an adjoint model to provide the gradient information in an iterative minimization process, whereas the inverse 3D-Var (I3D-Var) seeks for optimal initial conditions directly by running a quasi -inverse model. For a process with small dissipation, I3D-Vu outperforms 4D-Var in both computing time and accuracy. Hybrid application which combines I3D-Var and standard 4D-Var is also suggested for efficient data assimilation in air quality problems.

Harmonization of IFC 3D Building Model Standards and ISO/STEP AP202 Drawing Standards for 2D Shape Data Representation (IFC 3차원 건축모델표준과 ISO/STEP AP202도면표준의 2차원 형상정보 연계방안)

  • Won, Ji-Sun;Lim, Kyoung-Il;Kim, Seong-Sig
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.6
    • /
    • pp.429-439
    • /
    • 2006
  • The purpose of this study is to support the integration from current 2D drawing-based design to future 3D model-based design. In this paper, an important theme is the combination between the STEP-based 2D drawing standards (i.e., AP202) and the IFC-based 3D building model standards. To achieve the purpose, two methodologies are proposed as follows: the development of IFC extension model for the 2D shape data representation by harmonizing ISO/STEP AP202; and the development of mapping solution between IFC 2D extension model and KOSDIC by constructing the exchange scenario for 2D shape data representation. It is expected that the proposed IFC2X2 2D extension model and mapping solution will offer the basis of development of the integrated standards model in AEC industry.

Development of 3D Modeling Technology of Human Vacancy for Bio-CAD (Bio-CAD를 위한 인체공동부의 3차원 모델링 기술 개발)

  • Kim, Ho-Chan;Bae, Yong-Hwan;Kwon, Ki-Su;Seo, Tae-Won;Lee, Seok-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.138-145
    • /
    • 2009
  • Custom medical treatment is being widely adapted to lots of medical applications. A technology for 3D modeling is strongly required to fabricate medical implants for individual patient. Needs on true 3D CAD data of a patient is strongly required for tissue engineering and human body simulations. Medical imaging devices show human inner section and 3D volume rendering images of human organs. CT or MRI is one of the popular imaging devices for that use. However, those image data is not sufficient to use for medical fabrication or simulation. This paper mainly deals how to generate 3D geometry data from those medical images. A new image processing technology is introduced to reconstruct 3D geometry of a human body vacancy from the medical images. Then a surface geometry data is reconstructed by using Marching cube algorithm. Resulting CAD data is a custom 3D geometry data of human vacancy. This paper introduces a novel 3D reconstruction process and shows some typical examples with implemented software.

Development of 2D Tight-fitting Collar Pattern from 3D Scan Data of Various Types of Men's Dressform (남성 체형별 인대의 3차원 형상 데이터와 칼라 패턴 개발)

  • Jeong Yeon-Hee;Kim So-Young;Hong Kyung-Hi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.5 s.153
    • /
    • pp.722-732
    • /
    • 2006
  • The pattern making of the tight-fitting collars which often used in diving suits, dance wear, or cycle wear has not been fully established. To develop tight-fitting collar pattern directly from 3D images from the representative somatotypes, dressforms developed by Jaeun Jung were used. The 3D scan data of the four male dressforms were obtained using Exyma-1200. Triangle Simplification and the Runge-Kutta method were applied to reduce the 3D scan data points and to make the segmented triangular patches in a plane from 3D data. As results, apparent differences between the tight-fitting collar patterns obtained from the 3D scan data and the ordinary 2D collar patterns were found around the center back line. The curvatures of the center back line were higher in all types of the tight-fitting collar than in the ordinary collar pattern. Relative differences in the shape of collar lines among four representative Korean men were reported. To fit the curved shape of the back neckline, 1.8 cm should be reduced from the upper neckline in average. We suggested the direct pattern making method for the 2D tight-fitting collar patterns considering the 3D shape of various types of men's dressform.

Design of a Mapping Framework on Image Correction and Point Cloud Data for Spatial Reconstruction of Digital Twin with an Autonomous Surface Vehicle (무인수상선의 디지털 트윈 공간 재구성을 위한 이미지 보정 및 점군데이터 간의 매핑 프레임워크 설계)

  • Suhyeon Heo;Minju Kang;Jinwoo Choi;Jeonghong Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.3
    • /
    • pp.143-151
    • /
    • 2024
  • In this study, we present a mapping framework for 3D spatial reconstruction of digital twin model using navigation and perception sensors mounted on an Autonomous Surface Vehicle (ASV). For improving the level of realism of digital twin models, 3D spatial information should be reconstructed as a digitalized spatial model and integrated with the components and system models of the ASV. In particular, for the 3D spatial reconstruction, color and 3D point cloud data which acquired from a camera and a LiDAR sensors corresponding to the navigation information at the specific time are required to map without minimizing the noise. To ensure clear and accurate reconstruction of the acquired data in the proposed mapping framework, a image preprocessing was designed to enhance the brightness of low-light images, and a preprocessing for 3D point cloud data was included to filter out unnecessary data. Subsequently, a point matching process between consecutive 3D point cloud data was conducted using the Generalized Iterative Closest Point (G-ICP) approach, and the color information was mapped with the matched 3D point cloud data. The feasibility of the proposed mapping framework was validated through a field data set acquired from field experiments in a inland water environment, and its results were described.

APPLICATION OF HIGH RESOLUTION SATELLITE IMAGERY ON X3D-BASED SEMANTIC WEB USING SMART GRAPHICS

  • Kim, Hak-Hoon;Lee, Kiwon
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.586-589
    • /
    • 2006
  • High resolution satellite imagery is regarded as one of the important data sets to engineering application, as well as conventional scientific application. However, despite this general view, there are a few target applications using this information. In this study, the possibility for the future wide uses in associated with smart graphics of this information is investigated. The concept of smart graphics can be termed intelligent graphics with XML-based structure and knowledge related to semantic web, which is a useful component for the data dissemination framework model in a multi-layered web-based application. In the first step in this study, high resolution imagery is transformed to GML (Geographic Markup Language)-based structure with attribute schema and geo-references. In the second, this information is linked with GIS data sets, and this fused data set is represented in the X3D (eXtensible 3D), ISO-based web 3D graphic standard, with styling attributes, in the next stop. The main advantages of this approach using GML and X3D are the flourished representations of a source data according to user/clients’ needs and structured 3D visualization linked with other XML-based application. As for the demonstration of this scheme, 3D urban modelling case with actual data sets is presented.

  • PDF

An Exact 3D Data Extraction Algorithm For Active Range Sensor using Laser Slit (레이저 슬릿을 사용하는 능동거리 센서의 정확한 3D 데이터 추출 알고리즘)

  • Cha, Y.Y.;Gweon, D.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.8
    • /
    • pp.73-85
    • /
    • 1995
  • The sensor system to measure the distance precisely from the center of the sensor system to the obstacle is needed to recognize the surrounding environments, and the sensor system is to be calibrated thoroughly to get the range information exactly. This study covers the calibration of the active range sensor which consists of camera and laser slit emitting device, and provides the equations to get the 3D range data. This can be possible by obtaining the extrinsic parameters of laser slit emitting device through image processing the slits measured during the constant distance intervals and the intrinsic parameters from the calibration of camera. The 3D range data equation derived from the simple geometric assumptions is proved to be applicable to the general cases using the calibration parameters. Also the exact 3D range data were obtained to the object from the real experiment.

  • PDF

Application Two-Dimensional Pattern Development of Cycling Tights based on the Three-Dimensional Body Scan Data of High School Male Cyclist

  • Park, Hyunjeong;Do, Wolhee
    • Fashion & Textile Research Journal
    • /
    • v.22 no.5
    • /
    • pp.595-606
    • /
    • 2020
  • This study develops an optimal two-dimensional (2D) pattern from three-dimensional human scan data by considering the cycling posture and dermatome of high school male cyclists. By analyzing the body surface change in the cycling posture and considering the dermatome of the lower limbs, the optimal cutting line setting and the development of cycling tights for individual cyclists were presented to provide data that could be used in the clothing industry. We designed three cycling tights to solve the size unsuitability. 3D design 1 is a non-extension design based on the analysis of the 3D human body scan data, in which parts were connected diagonally from the front of the knee to the back of the knee. 3D design 2 removed both the front and back to reduce air resistance during cycling. 3D design 3 did not have a cutting line on the front panel because of the air resistance during cycling in the front area. We analyzed the garment pressure for 8 points of lower body and performed a subjective evaluation of the 3D designed tights and the current cycling tights. The 3D design 1 in this study was well received in the omphalion, thigh, and hip area, while 3D design 3 was well received in the omphalion, thigh, hip, and bottom bands. Therefore, the LoNE of 3D design 1 was applied to the front, and the hip cutting line of 3D design 3 was applied to the back.

A Study on the Generation of Basic Modeling 3D Data for Product Design (제품디자인 기초모델링 3D데이터 생성에 관한 연구)

  • Lee, Junsang;Park, Junhong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.652-654
    • /
    • 2018
  • The process of generating basic modeling data in product design and production design is very important and it takes a lot of time to produce. To overcome these shortcomings, 3D scanning technology is emerging that can easily acquire modeling data. In this paper, we propose a technique to convert the image data from the image data to the modeling data after shooting the objects in the space, and generate the basic modeling data applicable to the product design. It also suggests ways to redirect and utilize the basic modeling data of the product.

  • PDF

Framework for Reconstructing 2D Data Imported from Mobile Devices into 3D Models

  • Shin, WooSung;Min, JaeEun;Han, WooRi;Kim, YoungSeop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.6-9
    • /
    • 2021
  • The 3D industry is drawing attention for its applications in various markets, including architecture, media, VR/AR, metaverse, imperial broadcast, and etc.. The current feature of the architecture we are introducing is to make 3D models more easily created and modified than conventional ones. Existing methods for generating 3D models mainly obtain values using specialized equipment such as RGB-D cameras and Lidar cameras, through which 3D models are constructed and used. This requires the purchase of equipment and allows the generated 3D model to be verified by the computer. However, our framework allows users to collect data in an easier and cheaper manner using cell phone cameras instead of specialized equipment, and uses 2D data to proceed with 3D modeling on the server and output it to cell phone application screens. This gives users a more accessible environment. In addition, in the 3D modeling process, object classification is attempted through deep learning without user intervention, and mesh and texture suitable for the object can be applied to obtain a lively 3D model. It also allows users to modify mesh and texture through requests, allowing them to obtain sophisticated 3D models.