• Title/Summary/Keyword: 3-Axis Robot

Search Result 166, Processing Time 0.023 seconds

Development of DNA Chip Microarrayer

  • Yoon, Sung-Ho;Choi, Jong-Gil;Lee, Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.21-26
    • /
    • 2000
  • A microarrayer system was developed mainly for manufacturing DNA chips. The 3-axis robot was designed to automatically collect samples from 96-or 384-well microtiter plates using up to 16 simultaneously moving pens and to deposit them on a surface-modified slide glass. This is followed by a wash/dry operation in a clean station. The cycle is repeated with a new set of samples, This system can deposit cDNA or oligonucleotides with spot intervals of $150{\;}\mu\textrm{m}$ and the spot size of $80\mu\textrm{m}$, thus allowing a high density DNA chip containing about 5,000 spots per $\textrm{cm}^2$. The entire procedure is controlled by the Visual C++ program that was written in our laboratory by using a personal computer with Pentium 100 CPU.

  • PDF

Development of Abdominal Compression Belt and Evaluation of the Efficiency for the Reduction of Respiratory Motion in SBRT (체부 정위방사선치료 시 호흡운동 감소를 위한 복부 압박기구 개발 및 유용성 평가)

  • Hwang, Seon-Bung;Kim, Il-Hwan;Kim, Woong;Im, Hyeong-Seo;Gang, Jin-Mook;Jeong, Seong-Min;Kim, Gi-Hwan;Lee, Ah-Ram;Cho, Yu-Ra
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.23 no.1
    • /
    • pp.13-19
    • /
    • 2011
  • Purpose: It's essential to minimize the tumor motion and identify the exact location of the lesions to achieve the improvement in radiation therapy efficiency during SBRT. In this study, we made the established compression belt to reduce respiratory motion and evaluated the usefulness of clinical application in SBRT. Materials and Methods: We analyzed the merits and demerits of the established compression belt to reduce the respiratory motion and improved the reproducibility and precision in use. To evaluate the usefulness of improved compression belt for respiratory motion reduction in SBRT, firstly, we reviewed the spiral CT images acquired in inspiration and expiration states of 8 lung cancer cases, respectively, and analyzed the three dimensional tumor motion related to respiration. To evaluate isodose distribution, secondly, we also made the special phantom using EBT2 film (Gafchronic, ISP, USA) and we prepared the robot (Cartesian Robot-2 Axis, FARARCM4H, Samsung Mechatronics, Korea) to reproduce three dimensional tumor motion. And analysis was made for isodose curves and two dimensional isodose profiles with reproducibility of respiratory motion on the basis of CT images. Results: A respiratory motion reduction compression belt (Velcro type) that has convenient use and good reproducibility was developed. The moving differences of three dimensional tumor motion of lung cancer cases analyzed by CT images were mean 3.2 mm, 4.3 mm and 13 mm each in LR, AP and CC directions. The result of characteristic change in dose distribution using the phantom and rectangular coordinates robot showed that the distortion of isodose has great differences, mean length was 4.2 mm; the differences were 8.0% and 16.8% each for cranio-caudal and 8.1% and 10.9% each for left-right directions in underdose below the prescribed dose. Conclusion: In this study, we could develop the convenient and efficient compression belt that can make the organs' motion minimize. With this compression belt, we confirmed that underdose due to respiration can be coped with when CTV-PTV margins of mean 6 mm would be used. And we conclude that the respiratory motion reduction compression belt we developed can be used for clinical effective aids along with the gating system.

  • PDF

The Control of Flexible Robot Arm using Adaptive Control Theory (적응제어 이론을 이용한 유연한 로봇팔의 제어)

  • Han, Jong-Kil
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.5
    • /
    • pp.1139-1144
    • /
    • 2012
  • The ration of payload to weight of industrial robot amounts form 1:10 to 1:30. Compared with man who have a ration of 3:1, it is very low. One of the goals for the next generation of robots will be a ration. This might be possible only by developing lightweight robots. When two-link flexible arm is rotated about an joint axis, transverse vibration may occur. In this paper, vibration dynamics of flexible arm is modeled by using Bernoulli-Euler beam theory and Lagrange equation. Using the fact that matrix $\dot{D}-2C$ is skew symmetric, new controllers which have a simplified structure with less computational burden is proposed by using Lyapunov stability theory. We propose deterministic and adaptive control laws for two link flexible arm, and the validity of the proposed control scheme is shown in computer simulation for two-link flexible arm.

Improved LiDAR-Camera Calibration Using Marker Detection Based on 3D Plane Extraction

  • Yoo, Joong-Sun;Kim, Do-Hyeong;Kim, Gon-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2530-2544
    • /
    • 2018
  • In this paper, we propose an enhanced LiDAR-camera calibration method that extracts the marker plane from 3D point cloud information. In previous work, we estimated the straight line of each board to obtain the vertex. However, the errors in the point information in relation to the z axis were not considered. These errors are caused by the effects of user selection on the board border. Because of the nature of LiDAR, the point information is separated in the horizontal direction, causing the approximated model of the straight line to be erroneous. In the proposed work, we obtain each vertex by estimating a rectangle from a plane rather than obtaining a point from each straight line in order to obtain a vertex more precisely than the previous study. The advantage of using planes is that it is easier to select the area, and the most point information on the board is available. We demonstrated through experiments that the proposed method could be used to obtain more accurate results compared to the performance of the previous method.

3D Multi-floor Precision Mapping and Localization for Indoor Autonomous Robots (실내 자율주행 로봇을 위한 3차원 다층 정밀 지도 구축 및 위치 추정 알고리즘)

  • Kang, Gyuree;Lee, Daegyu;Shim, Hyunchul
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.1
    • /
    • pp.25-31
    • /
    • 2022
  • Moving among multiple floors is one of the most challenging tasks for indoor autonomous robots. Most of the previous researches for indoor mapping and localization have focused on singular floor environment. In this paper, we present an algorithm that creates a multi-floor map using 3D point cloud. We implement localization within the multi-floor map using a LiDAR and an IMU. Our algorithm builds a multi-floor map by constructing a single-floor map using a LOAM-based algorithm, and stacking them through global registration that aligns the common sections in the map of each floor. The localization in the multi-floor map was performed by adding the height information to the NDT (Normal Distribution Transform)-based registration method. The mean error of the multi-floor map showed 0.29 m and 0.43 m errors in the x, and y-axis, respectively. In addition, the mean error of yaw was 1.00°, and the error rate of height was 0.063. The real-world test for localization was performed on the third floor. It showed the mean square error of 0.116 m, and the average differential time of 0.01 sec. This study will be able to help indoor autonomous robots to operate on multiple floors.

Wide-Range Sensorless Control for SPMSM Using an Improved Full-Order Flux Observer

  • Lee, Kyoung-Gu;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.721-729
    • /
    • 2015
  • A sensorless control method was recently investigated in the robot and automation industry. This method can solve problems related to the rise of manufacturing costs and system volume. In a vector control method, the rotor position estimated in the sensorless control method is generally used. This study is based on a conventional full-order flux observer. The proposed full-order flux observer estimates both currents and fluxes. Estimated d- and q-axis currents and fluxes are used to estimate the rotor position. In selecting the gains, the proposed full-order flux observer substitutes gain k for the speed information in the denominator of the gain for fast convergence. Therefore, accurate speed control in a low-speed region can be obtained because gains do not influence the estimation of the rotor position. The stability of the proposed full-order flux observer is confirmed through a root-locus method, and the validity of the proposed observer is experimentally verified using a surface permanent-magnet synchronous motor.

A Robotic Milking Manipulator for Teat-cup Attachment Modules (착유컵 자동 착탈을 위한 매니퓰레이터 개발)

  • Lee, D. W.;Kim, W.;Kim, H. T.;Kim, D. W.;Choi, D. Y.;Han, J. D.;Kwon, D. J.;Lee, S. K.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.2
    • /
    • pp.163-168
    • /
    • 2001
  • A manipulator for test-cup attachment modules, which was a part of a robot milking system, was developed to reduce cost and labor for cow milking processing. A Cartesian coordinate manipulator was designed for the milking process, because it was quite flexible and can be constructed more economically than any other configuration. The manipulator was made use of DC motors, screws for power transmission, a RS422 interface system for the transmission of coordinate values and a one-chip microprocessor, 89C52. Performance tests of the manipulator were conducted to measure experimentally the precision of all axes. Some of the results are as follows. 1. The Cartesian coordinate manipulator was designed and built. Dimension of the three perpendicular axes (X, Y, and Z) and one arm’s axis(W) to pick up and transfer the modules were 700㎜$\times$450㎜$\times$550㎜$\times$650㎜. The arm’s axis moved the teat-cup attachment module, which attached four teat-cup to four teats, detached four teat-cup from four teats, was designed and manufactured by using CAD, CAM and CNC. 3. After 10 replications of exercising the manipulator, mean precision values(positioning error) of X, Y, Z axes wee 0.48㎜, 0.20㎜, 0.19㎜, respectively. Therefore, we conclude the axes to have a precision better than 0.5㎜, had no problem to operate correctly the milking manipulator.

  • PDF

A Study on System for Real-time Measurement of Welding Distortion (실시간 용접변형 계측을 위한 시스템에 관한 연구)

  • Jeong, Jae-Won;Kim, Ill-Soo;Kim, In-Ju;Son, Sung-Woo;Shim, Ji-Yeon
    • Journal of Welding and Joining
    • /
    • v.27 no.5
    • /
    • pp.62-67
    • /
    • 2009
  • Welding deformation during the assembly process is affected by not only local shrinkage due to rapid heating and cooling, but also root gap and misalignment between parts to be welded. Therefore, the prediction and control of welding deformation have become of critical importance. In this study, it was focused on the development of the 3-axis apparatus for real-time measurement of the welded deformation. To achieve the objective, a D-H algorithm has been carried out to check the behavioral and performance evaluation for the developed robot. The sequence experiments were taken the base materials of $400{\times}200{\times}4.5mm$ plate for butt welding. The real-time experimental measurements are in good agreement with the measured results.

A Study on T-Joint Welding by High Power Fiber Laser of SAPH Steel Plate for Automobile (자동차용 강판 SAPH의 고출력 파이버 레이저에 의한 T형상 용접특성에 관한 연구)

  • Oh, Yong-Seok;Yoo, Young-Tae;Shin, Ho-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.35-44
    • /
    • 2009
  • The purpose of this paper is to describe experimental results about the T-joint welding of the high power continuous wave (CW) fiber laser for SAPH steel plate for seat frame of car. The seat rail is a part of seat frame of cars. The assembling method is mostly fix up using a bolt and nut. But this assembling method has many demerits in productivity such as increasing work process and material cost. This paper presents an experimental study about Laser T-Joint weldability of seat rail. Laser welding has many advantages in lightness and saving material costs of seat frame. The laser beam was moved along the work pieces by six axis robot with process optical fiber. The laser beam is focused with a welding head within incident angle $15{\sim}45^{\circ}$ for the purpose of the T-joint welding through two side full penetration. The range of the root gap size is less than ${\leq}0.4mm$. Optical microscopy SEM were performed to observe the micro structures and determine the structures of welded zone.

Development of a Automatic Welding System for Various Marks on the Hull of Vessels (선박외판 문자 자동용접 시스템의 개발)

  • Yoon, Hun-Sung;Yang, Jong-Soo;Kim, Ho-Kyeong;Choi, Young-Dal
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2008.09a
    • /
    • pp.90-95
    • /
    • 2008
  • The letters and marks on the hull of vessels are marked by welding bead or steel plate to resist the corrosion environment. It has done by manual work. So, it cause deterioration of welding quality and process delay and so on. The automated welding device for draft mark has developed partially in the field of shipbuilding. But it can be used for draft mark only. And it has caused a few problems about that workablity and movablity are decreased owing to the size and weight of device. So we developed the automated welding device that can be used for most letters and marks on the hull. It designed to 3 axises mobile robot include to ratoation axis and stand alone type controller with multi GUI base on imbedded windows.

  • PDF