• Title/Summary/Keyword: 3 Point Bending Test

Search Result 370, Processing Time 0.026 seconds

Effect of Interlayer Materials on Bending Strength and Reliability of Si$_3$N$_4$/S. S316 Joint (Si$_3$N$_4$/S. S316 접합에서 중간재가 접합강도 및 신회도에 미치는 영향)

  • 윤호욱;박상환;최성민;임연수;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.3
    • /
    • pp.219-230
    • /
    • 1998
  • Various interlayer materials have been tested for active metal(Cusil ABA) brazing of Si3N4/S. S316 joint. In general multilayer joint had higher strength(80-150 MPa) and better reliability than monolayered one. The joint with Cu(0.2)/Mo(0.3)/Cu(0.2mm) interlayer showed the highest bending strength of abou 490 MPa and the joint with Cu(0.2)/Mo(0.3mm) interlayer the best reliability (14.6 Weibull modulus). The stresses distributed in joint materials during 4-point bending test were estimated by CAE von Mises analysis; the estimated stresses were In good agreement with the measured data. In multilayer joint Cu was though to reduce the residual stresses induced by the difference in thermal expansion coefficient between the ceramic Mo and metal It apperared that a Cu/Mo was optimum interlayer material for Si3N4/S. S316 joint with high bending strength (420 MPa) and reliability. In addition the various shapes and types of compound were examined by EPMA in joining interface.

  • PDF

An Experimental Study on the Mechanical Mounting between GFRP Door Impact Beam and Steel Brackets (GFRP 도어 임팩트 빔과 Steel 브래킷의 기계적 결합에 관한 실험적 연구)

  • Ha, Jung-Chan;Shin, Young-cheol;Baek, In-Seok;Lee, Seok-Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.103-110
    • /
    • 2021
  • The mounting performance of the GFRP(Glass fiber Reinforced Plastic) beam and the mechanical mounting of the steel bracket was studied to be mounted as a GFRP impact beam on the side door of the passenger car. Moreover, an open-hole tensile test was performed to evaluate breakage tendency based on GFRP stacking conditions. Furthermore, the tightening strength of rivets and bolts was compared using the single lap-shear tension test for the GFRP stacking pattern. Additionally, the GFRP beam and bracket mounting features were designed; moreover, the prototype and bracket were assembled. Additionally, the bracket mounting bending test and the door assembly static bending test were performed to verify the stability of the bracket mounting. In the bracket fastening bending test, no breakage occurred in the connection part between the GFRP beam and the bracket, and it showed 67% (24.4 kN) improved performance compared to steel. In the static bending test of the door assembly, the initial average reaction force increased by 25% compared to the steel, and the performance of all FMVSS-214 regulations was satisfied. The replacement of GFRP impact beams resulted in a 30% weight reduction

Strength Properties of $Al_2O_3$ Ceramics with Textile Machinery (섬유기기용 $Al_2O_3$계 세라믹스의 강도 특성)

  • An, B.G.;Ahn, S.H.;Park, I.D.;Nam, K.W.
    • Journal of Power System Engineering
    • /
    • v.8 no.4
    • /
    • pp.44-48
    • /
    • 2004
  • For many years researchers have been attempting to establish the relations among the preparation history, structure and properties of ceramics. In this study, the strength property of $Al_2O_3$ ceramics with components and giudes of the textile machinery was investigated. The optimized conditions of ressureless sintering were investigated in order to obtain the maximum strength of $Al_2O_3$ ceramics for using at the textile machinery. As the sintering conditions, $1,400{\sim}1,700^{\circ}C$ of temperatures and $30{\sim}150$ minutes of times were applied. Three-point bending test was conducted on the sintered materials to obtain the strength property. From test results, the optimum sintering temperature has $1,600^{\circ}C$. And the optimum sintering time in $1,600^{\circ}C$ has about 100 minutes.

  • PDF

Characterization and observation of Cu-Cu Thermo-Compression Bonding using 4-point bending test system (4-point bending test system을 이용한 Cu-Cu 열 압착 접합 특성 평가)

  • Kim, Jae-Won;Kim, Kwang-Seop;Lee, Hak-Joo;Kim, Hee-Yeon;Park, Young-Bae;Hyun, Seung-Min
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.4
    • /
    • pp.11-18
    • /
    • 2011
  • The quantitative interfacial adhesion energy of the Cu-Cu direct bonding layers was evaluated in terms of the bonding temperature and Ar+$H_2$ plasma treatment on Cu surface by using a 4-point bending test. The interfacial adhesion energy and bonding quality depend on increased bonding temperature and post-annealing temperature. With increasing bonding temperature from $250^{\circ}C$ to $350^{\circ}C$, the interfacial adhesion energy increase from $1.38{\pm}1.06$ $J/m^2$ to $10.36{\pm}1.01$ $J/m^2$. The Ar+$H_2$ plasma treatment on Cu surface drastically increase the interfacial adhesion energy form $1.38{\pm}1.06$ $J/m^2$ to $6.59{\pm}0.03$ $J/m^2$. The plasma pre-treatment successfully reduces processing temperature of Cu to Cu direct bonding.

Investigation into Characteristics of Bending Stiffness and Failure for ISB Panel (ISB 판넬의 굽힘강성 및 파손특성에 관한 연구)

  • Ahn Dong-Gyu;Lee Sang-Hoon;Kim Min-Su;Han Gil-Young;Jung Chang-Gyun;Yang Bong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.162-172
    • /
    • 2005
  • The objective of this research works is to investigate into characteristics of bending stiffness and failure for the ISB ultra-lightweight panel with internally structured material. The expanded metal with a crimped pyramid shape and woven metal are employed as an internally structured material. Through three-points bending test, the force-displacement curve and failure shape are obtained to examine the deformation pattern, characteristic data, such as maximum load, displacement at maximum load, etc, and failure pattern of the ISB panel. In addition, the influence of design parameters fur ISB panel on the specific stiffness, the specific stiffness per unit width, failure mode and failure map has been found. Finally, it has been shown that ISB containing expand metal with the crimped pyramidal shape is prefer to that containing woven metal from the view point of optimal design for ISB panel.

Study on the Optimization Design and Impact Experiment of Side Door for Impact Beam in the Vehicle Side Door (차량 측면도어 임팩트 빔의 최적설계 및 측면도어 충돌실험에 관한 연구)

  • Kim, Jae Yeol;Choi, Soon Ho
    • Tribology and Lubricants
    • /
    • v.31 no.1
    • /
    • pp.13-20
    • /
    • 2015
  • The impact beam, a beam-shaped reinforcement installed horizontally between the inside and outside panels of car doors, is gaining importance as a solution to meet the regulations on side collision of vehicles. In order to minimize pelvis injury which is the biggest injury happening to the driver and passengers when a vehicle is subject to side collision, energy absorption at the door impact beam should be maximized. For the inner panel, the thrust into the inside of the vehicle must be minimized. The impact beam should be as light as possible so that the extent of pelvis injury to the driver and passenger during side collision of the vehicle is minimal. To achieve this, the weight of the impact beam, has to be optimized. In this study, we perform a design analysis with a goal to reduce the weight of the current impact design by 30% while ensuring stability, reliability, and comparison data of the impact beam for mass production. We conduct three-point bending stress experiments on conventional impact beams and analyze the results. In addition, we use a side-door collision test apparatus to test the performance of beams made of three (different materials: steel, aluminum, and composite beams).

Equivalent Shear Modulus of Egg-Box Core (에그-박스 코어의 등가 전단 탄성계수)

  • Lee, Sang-Youn;Yun, Su-Jin;Park, Dong-Chang;Yoon, Hyun-Gull
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.938-941
    • /
    • 2011
  • This paper deals with the equivalent shear modulus of the egg-box core. There are three approaches to obtain the equivalent shear modulus of core: a finite element analysis, an analytical study, and an empirical method. In this study, an 3-point bending test is used to evaluate the equivalent shear modulus of the Egg-Box core. As a result of the present work, the equivalent shear modulus of egg-box core at room temperature can be obtained. And this result is compared with the result of finite element analysis.

  • PDF

Application of Acoustic Emission Technique for Detection of Crack in Notched Concrete Beams (노치가 있는 콘크리트 보에서 균열검출을 위한 음향방출기법의 적용)

  • Jin, Chi-Sub;Lee, Nae-Chul;Shin, Dong-lk;Kwon, Sung-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.4
    • /
    • pp.215-220
    • /
    • 1999
  • Concrete micro-cracks that are grown while the structures are under construction or in service, propagate gradually or rapidly by external forces and environmental effects. As described above, almost concrete structures generally have cracks, so for the safety and durability of structures, studies to detect cracks using nondestructive tests have been treated in great deal. The purpose of this study is to evaluate characteristics of AE signals detected from notched concrete beams bending test with different loading using one of nondestructive test, Acoustic Emission (AE) method. Furthermore this study predicts the location of initial crack and measures direction of crack propagation for on-line monitoring before the crack really grows in structures by using two-dimensional AE source location based on rectangular method with three-point bending test. This will allow efficient maintenance of concrete structures through monitoring of internal cracking based on acoustic emission method.

  • PDF

Simulation study on CFRP strengthened reinforced concrete beam under four-point bending

  • Zhang, Dongliang;Wang, Qingyuan;Dong, Jiangfeng
    • Computers and Concrete
    • /
    • v.17 no.3
    • /
    • pp.407-421
    • /
    • 2016
  • This paper presents numerical modeling of the structural behavior of CFRP (carbon fiber reinforced polymer) strengthened RC (reinforced concrete) beams under four-point bending. Simulation of debonding at the CFRP-concrete interface was focused, as it is the main failure mode of CFRP strengthened RC beams. Here, cohesive layer was employed to model the onset of debonding, which further helps to describe the post debonding behavior of the CFRP strengthened RC beam. In addition, the XFEM approach was applied to investigate the effects of crack localization on strain field on CFRP sheet and rebar. The strains obtained from the XFEM correlate better to the test results than that from CDP (concrete damaged plasticity) model. However, there is a large discrepancy between the experimental and simulated loaddisplacement relationships, which is due to the simplification of concrete constitutive law.

Influence of Residual Bending Fatigue Strength on Impact Damage of CFRP Composites (CFRP 적층판의 충격손상이 잔류 굽힘 피로강도에 미치는 영향)

  • Yang, Yong Jun;Yang, In Young
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.7-12
    • /
    • 2015
  • CFRP composites are used as primary structural members in various industrial fields because their specific strength and specific stiffness are excellent in comparison to conventional metals. Their usage is expanding to high added-value industrial fields because they are more than 50% lighter than metals, and have excellent heat resistance and wear resistance. However, when CFRP composites suffer impact damage, destruction of fiber and interface delamination occur. This causes an unexpected deterioration of strength, and for this reason it is very difficult to ensure the reliability of the excellent mechanical properties. Therefore, for the destruction mechanism in bending with impact damage, this study investigated the reinforcement data regarding various external loads by identifying the consequential strength deterioration. Specimens were damaged by impact with a steel ball propelled by air pressure. Decrease in bending strength caused by the tension and compression of the impact side, and depending on the lamination direction of fiber and interface inside the specimen. From the bending test it was found that the bending strength reduced when the impact energy increased. Especially in the case of compression on the impact side, as tensile stress occurred at the damage starting point, causing rapid failure and a substantially reduced failure strength.