본 논문에서는 스마트 안테나 시스템에 대해 경로 결함들의 보정과 전력 증폭기의 비선형성 보상을 결합하는 새로운 기술을 제안하였다. 배열 안테나의 각각의 경로들이 동일한 특성을 갖기 위한 보정과 보상을 위해 선형 항에 3차 항을 추가한 다항식과 간접 학습 구조를 사용하였다. 본 논문에서는 컴퓨터 모의실험을 통해 성능을 입증하였다. 모의실험 결과, 단 하나의 3차 항을 추가하여 선형 결함들뿐만 아니라 모든 비선형 효과까지 효율적으로 보상함을 확인하였다.
유한체의 곱셈과 나눗셈은 오류정정부호와 암호시스템에서 중요한 산술 연산이다. 유한체 GF(2$^{m}$ )의 원소를 표현하기 위해 다양한 기저가 사용되며 차수가 m인 GF(2)상의 원시다항식으로 구성할 수 있다. 정규기저를 사용하면 곱셈이나 곱셈 역원의 연산을 쉽게 수행할 수 있다. 정규기저 표현을 이용하는 Massey-Omura 승산기는 동일한 2진함수를 사용하여 몇 번의 순회치환으로 곱셈 또는 나눗셈이 수행되며 논리함수의 곱셈항 수가 승산기의 복잡도를 결정한다. 유한체의 정규기저는 항상 존재한다. 그러나 주어진 원시다항식에 대해 최적의 정규원소를 구하는 것은 쉽지 않다. 본 논문에서는 정규기저의 생성 방법을 고찰하고, Massey-Omura 승산기를 이용한 곱셈 또는 곱셈 역원의 계산에서 연산의 복잡도를 최소화할 수 있는 정규기저를 각 원시다항식에 대해 구하여, 최적의 정규원소와 곱셈항의 개수를 제시한다.
본 연구는 Chebyshev collocation operator를 지배 방정식의 시간 미분항에 적용하여 비정상 유동해석을 해석할 수 있는 기법을 개발한 논문이다. 시간적분으로 유속항은 내재적으로 처리하였으며 시간 미분항은 Chebyshev collocation operator을 적용하여 원천항 형태로 외재적으로 처리하여 부분 내재적 시간적분법을 적용하였다. 본 연구의 방법을 검증하기 위해 1차원 비정상 burgers 방정식과 2차원 진동하는 airfoil에 적용하였으며 기존의 비정상 유동 주파수 해석기법과 시험 결과를 비교하여 나타내었다. Chebyshev collocation operator는 주기적인 문제와 비주기적인 문제에 대해서 시간 미분항을 처리할 수 있으므로 추후 비주기적인 문제에 적용할 예정이다.
In this paper, we proposed a multiplicative algorithm for two polynomials in existence coefficients over finite field GF(3$^{m}$ ). Using the proposed multiplicative algorithm, we constructed the multiplier of modular architecture with parallel in-output. The proposed multiplier is composed of (m+1)$^2$identical cells, each cell consists of single mod(3) additional gate and single mod(3) multiplicative gate. Proposed multiplier need single mod(3) multiplicative gate delay time and m mod(3) additional gate delay time not clock. Also, the proposed architecture is simple, regular and has the property of modularity, therefore well-suited for VLSI implementation.
본 논문에서는 피드포워드 방식을 이용하여 전력 증폭기의 비선형성 보상과 스마트 안테나 시스템의 경로 결함 보정을 결합하는 새로운 기술을 제안하였다. 배열 안테나의 각각의 경로들이 동일한 특성을 갖도록 하기 위한 보상과 보정을 위해 선형 식에 3차 항을 추가한 다항식과 피드포워드 방식을 사용하였다. 이 방식은 원래의 기저대역 신호를 변형하지 않으므로, 시스템의 기저대역 부와는 독립적인 스마트 안테나 시스템에 적용할 수 있다. 컴퓨터 모의실험을 통하여, 단 하나의 3차 항을 추가함으로써 전력 증폭기의 비선형 효과를 효율적으로 보상하고, 배열 안테나의 각 경로의 선형 결함들 역시 부차적으로 보정할 수 있다.
자연에 존재하는 새나 곤충들은 양력 및 추력을 발생하기 위하여 평균캠버선의 형상을 변화시킨다. 기존의 비정상 박익 이론들은 주로 강체 플랩핑 에어포일에 관하여 유도되어 왔다. 생체형상가변익의 비정상 공력특성을 파악하기 위하여 변형 가능한 에어포일에 대한 확장된 비정상 박익이론이 필요하다. 생체형상가변익의 비정상 공력특성을 계산하기 위해 Theodorsen의 접근방법을 확장하였다. 에어포일의 평균 캠버선은 다항식으로 나타내었다. 형상 가변익에 작용하는 비정상 공력특성을 순환항 및 비순환항으로 나누어 나타내었다. 본 이론은 플래핑운동을 하는 생체형상가변 에어포일의 비정상 공력해석 및 모핑날개의 공탄성 해석에 적용가능하다.
본 논문에서는 유한체 $GF(3^m)$상에서 모든 항에 0이 아닌 계수가 존재하는 기약 다항식에 대하여 m이 홀수 및 짝수인 경우인$GF(3^m)$상의 승산 알고리즘을 제시하였으며, 제시된 승산 알고리즘을 이용하여 고속의 병렬 입-출력 모듈구조의 승산기를 구성하였다. 제시한 승산기의 구성은 $(m+1)^2$개의 동일한 기본 셀들로 설계되었으며, 기본 셀은 1개의 mod(3) 가산 게이트와 1개의 mod(3) 승산 게이트로 구성하였다. 셀에 래치를 사용하지 않았으므로 회로가 가장 간단하며, 셀당 지연시간도 $T_A+T_X$로서 가장 적다. 본 연구에서 제안한 승산기는 규칙성과 셀 배열에 의한 모듈성을 가지므로 m이 큰 회로의 확장이 용이하며 VLSI회로 실현에 적합할 것이다.
쇄파대(碎波帶)에서 undertow에 관한 해석적(解釋的) 모형(模型)을 제시(提示)하였다. 유도(誘導)된 기초방정식(基礎方程式)의 각 항(項)은 크기 비교(比較)로 평가(評價)되었으며, 이에 따라 난류법선응력(亂流法線應力)와 streaming velocity 항(項)이 무시(無視)될 수 있었다. undertow의 기동력(起動力)이 되는 파종성분(波動成分)의 각 항(項)은 Chebyshev 4차(次) 다항식(多項式)으로 근사(近似)한 파형(波形)으로 산정(算定)하였다. 그리고 과동점성계수(過動點性係數)의 연직분포(鉛直分布)를 3가지 형태(形熊)의 함수(凾數)로 가정(假定)하였으며, 과동점성계수(過動點性係數)의 상수(常數)는 새로운 경계조건(境界條件)을 도입(導入)하여 결정(決定)하였다. 그 결과(結果), undertow의 해(解)를 구하는데 필요한 인력(入力) 매개변수(媒介變數)가 간단화(簡單化) 되었다. 여러가지 수리실험자료(水理實驗資料)와 본(本) 모형(模型)의 해(解)를 비교(比較)한 결과(結果), 저면경사(底面傾斜)가 완만(緩慢)할수록 그리고 과동점성계수(過動點性係數)의 연직분포(鉛直分布)를 선형함수(線形凾數)로 가정(假定)하였을 때 좋은 결과(結果)를 나타내었다.
종확산 방정식에 대한 유한차분 모형으로서, 5차의 보간다항식을 사용한 Holly-Preissmann 기법과 Generalized Crank-Nicholson 기법을 결합한 혼합모형을 개발하였다. 순간적으로 부하된 오염원의 종확산문제에 본 모형 및 특성곡선을 고려한 다른 수치기법들을 적용하여 정확해와 비교하였다. 보 모형에 의한 계산결과, Courant 수에 관계없이 수치진동이 전혀 발생하지 않았으며, 최대농도 발생지점도 정확해와 일치하였다. 모형의 적용에 있어서 시간가중치 $\theta$의 값이 작을수록 계산의 정확성이 전반적으로 향상되는 것으로 나타났으며, $\theta$의 값을 크게 할수록 최대농도값을 과대평가하는 경향을 보였다. 전반적으로 Courant 수가 작을수록 정확한 계산결과를 나타내고 있으나 그 민감도는, 특히 $\theta$의 값이 작을수록, 매우 작게 나타났다. 3차의 보간다항식을 사용하는 혼합모형 및 연산자 분리방법들과의 비교결과, 이송항이 지배적일수록 본 모형이 정확해와 가장 근사한 계산결과를 보임을 알 수 있었다.
비선형 클라인 고든 방정식의 수치해를 구하기 위해 라그란제 보간을 사용하는데 비선형 항을 계산하기위해 보간식의 차이가 거의 없는 변형된 식을 사용하여 해의 .안정성과 해의 수렴성을 밝히고 오차를 분석하였다. 즉 $I(x)^{3}$ 대신에 $f(x_i)^{3}I_i(x)$을 사용하였으며 오차는 $C(\frac{1}{N})^{N-1} hN(N-1)(\frac{N}{2})^{N-1} /(\frac{N}{2})!$ 이하임을 보였고 석기서 N은 다항식의 차수이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.