• Title/Summary/Keyword: 2D crystals

Search Result 247, Processing Time 0.023 seconds

Mechanical removal of surface residues on graphene for TEM characterizations

  • Dong-Gyu Kim;Sol Lee;Kwanpyo Kim
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.28.1-28.6
    • /
    • 2020
  • Contamination on two-dimensional (2D) crystal surfaces poses serious limitations on fundamental studies and applications of 2D crystals. Surface residues induce uncontrolled doping and charge carrier scattering in 2D crystals, and trapped residues in mechanically assembled 2D vertical heterostructures often hinder coupling between stacked layers. Developing a process that can reduce the surface residues on 2D crystals is important. In this study, we explored the use of atomic force microscopy (AFM) to remove surface residues from 2D crystals. Using various transmission electron microscopy (TEM) investigations, we confirmed that surface residues on graphene samples can be effectively removed via contact-mode AFM scanning. The mechanical cleaning process dramatically increases the residue-free areas, where high-resolution imaging of graphene layers can be obtained. We believe that our mechanical cleaning process can be utilized to prepare high-quality 2D crystal samples with minimum surface residues.

Graphene Characterization and Application for Field Effect Transistors

  • Yu, Young-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.72-72
    • /
    • 2012
  • The next generation electronics need to not only be smaller but also be more flexible. To meet such demands, electronic devices using two dimensional (2D) atomic crystals have been studied intensely. Especially, graphene which have unprecedented performance fulfillments in versatile research fields leads a parade of 2D atomic crystals. In this talk, I will introduce the electrical characterization and applications of graphene for prominently electrical transistors realization. Even the rising 2D atomic crystals such as hexagonal boron nitride (h-BN), molybdenum disulfide (MoS2) and organic thin film for field effect transistor (FET) toward competent enhancement will be mentioned.

  • PDF

Dielectric and Piezoelectric Properties of "Lead-free" Piezoelectric Rhombohedral Ba(Ti0.92Zr0.08)O3 Single Crystals

  • Lee, Jong-Yeb;Oh, Hyun-Taek;Lee, Ho-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.171-177
    • /
    • 2016
  • Rhombohedral $Ba(Ti_{0.92}Zr_{0.08})O_3$ single crystals are fabricated using the cost-effective solid-state single crystal growth (SSCG) method; their dielectric and piezoelectric properties are also characterized. Measurements show that (001) $Ba(Ti_{0.92}Zr_{0.08})O_3$ single crystals have an electromechanical coupling factor ($k_{33}$) higher than 0.85, piezoelectric charge constant ($d_{33}$) of about 950 [pC/N], and piezoelectric voltage constant ($g_{33}$) higher than 40 [${\times}10^{-3}Vm/N$]. Especially the $d_{33}$ of (001) $Ba(Ti_{0.92}Zr_{0.08})O_3$ single crystals was by about six times higher than that of their ceramics. Because their electromechanical coupling factor ($k_{33}$) and piezoelectric voltage constant ($d_{33}$, $g_{33}$) are higher than those of soft PZT ceramics, it is expected that rhombohedral (001) $Ba(Ti_{0.92}Zr_{0.08})O_3$ single crystals can be used as "lead-free" piezoelectric materials in many piezoelectric applications such as actuator, sensor, and transducer.

Effect of Mn on Dielectric and Piezoelectric Properties of 71PMN-29PT [71Pb(Mg1/3Nb2/3)O3-29PbTiO3] Single Crystals and Polycrystalline Ceramics

  • Oh, Hyun-Taek;Joo, Hyun-Jae;Kim, Moon-Chan;Lee, Ho-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.2
    • /
    • pp.166-173
    • /
    • 2018
  • In order to investigate the effect of Mn on the dielectric and piezoelectric properties of PMN-PT [$Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$], four different types of 71PMN-29PT samples were prepared using the solid-state single crystal growth (SSCG) method: (1) Undoped single crystals, (2) undoped polycrystalline ceramics, (3) Mn-doped single crystals, and (4) Mn-doped polycrystalline ceramics. In the case of single crystals, the addition of 0.5 mol% Mn to PMN-PT decreased the dielectric constant ($K_3{^T}$), piezoelectric charge constant ($d_{33}$), and dielectric loss (tan ${\delta}$) by about 50%, but increased the coercive electric field ($E_C$) by 50% and the electromechanical quality factor ($Q_m$) by 500%, respectively. The addition of Mn to PMN-PT induced an internal bias electric field ($E_I$) and thus specimens changed from piezoelectrically soft-type to piezoelectrically hard-type. This Mn effect was more significant in single crystals than in ceramics. These results demonstrate that Mn-doped 71PMN-29PT single crystals, because they are piezoelectrically hard and simultaneously have high piezoelectric and electromechanical properties, have great potential for application in fields of SONAR transducers, high intensity focused ultrasound (HIFU), and ultrasonic motors.

Holographic Polymer-Dispersed Liquid Crystals and Polymeric Photonic Crystals Formed by Holographic Photolithography

  • Kyu Thein;Meng Scott;Duran Hatice;Nanjundiah Kumar;Yandek Gregory R.
    • Macromolecular Research
    • /
    • v.14 no.2
    • /
    • pp.155-165
    • /
    • 2006
  • The present article describes the experimental and theoretical observations on the formation of holographic, polymer-dispersed, liquid crystals and electrically switchable, photonic crystals. A phase diagram of the starting mixture of nematic liquid crystal and photo-reactive triacrylate monomer was established by means of differential scanning calorimetry (DSC) and cloud point measurement. Photolithographic patterns were imprinted on the starting mixture of LC/triacrylate via multi-beam interference. A similar study was extended to a dendrimer/photocurative mixture as well as to a single component system (tetra-acrylate). Theoretical modeling and numerical simulation were carried out based on the combination of Flory-Huggins free energy of mixing and Maier-Saupe free energy of nematic ordering. The combined free energy densities were incorporated into the time-dependent Ginzburg-Landau (Model C) equations coupled with the photopolymerization rate equation to elucidate the spatio-temporal structure growth. The 2-D photonic structures thus simulated were consistent with the experimental observations. Furthermore, 3-D simulation was performed to guide the fabrication of assorted photonic crystals under various beam-geometries. Electro-optical performance such as diffraction efficiency was evaluated during the pattern photopolymerization process and also as a function of driving voltage.

Barium Nitrate Single Crystals Growth by Aqueous Solution Method

  • B.H. Kang;Kim, R.H.;Kim, C.D.;Park, H.H.;B.K. Rhee;G.T. Joo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.09a
    • /
    • pp.55-63
    • /
    • 1998
  • The growing conditions of barium nitrate Ba(NO3)2 single crystals by aqueous solution method have been studied. Supersaturation of Ba(NO3)2 was 0.7% at 32.0$^{\circ}C$ and about 3% 34.0$^{\circ}C$. The obtained single crystals have three kind of morphology; the tertrahedron, the cube and rarely dodecahedron face. The faces of obtained crystals have been identified by X-ray diffractometer.

  • PDF

Crystal structure and thermal properties of solution crystallized nylon 4,6 (용액 결정성장하의 Nylon 4,6 의 결정구조 및 열적성질)

  • 김연철;홍성권
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1993.05a
    • /
    • pp.99-100
    • /
    • 1993
  • Calorimetric (D.S.C) studies were carried out on the nylon 4,6 single crystals grown from 1,4-butanediol solution at various crystallisation temperatures, based on the assessment of the lamellar thickness by small angle x-ray scattering. Samples were annealed mainly ot get rid of residual solvents inside the crystals. The effect of annealing on the crystal perfection is inferred from the measured thermal properties of the crystals. Accordig to the scanning rates less than 80 K/min., D. S C. melting peaks indicate that changes in the internal morphology of nylon 4,6 crystals preapred at different crystallisation temeratures yield a thermodynamic melting temperature. Tm, of 319 $^{\circ}C$, for the infinitely extended crystal thickness (1/ι). The obtained heat of fusion value for the inginite crystal thickness, Ho, was 270 J/g from the plot of measured feat of fusion ($\Delta$Hm) vs. reciprocal crystal thickness (1/ι). based on these values, the fold surface energy, $\delta$e. of 65.4 erg/$\textrm{cm}^2$ was obtained from Hoffman-Waeeks equation. The thermodynamic melting temperature and heat of fusion of the infinite crystal thickness for the solution grow nylon 4,6 single crystals are found to be higher than of the reported corresponding solution grown nylon 6,6 single crystals. pbtained crystallinity from D. S. C measurements ranges from 40 to 50 %, which is close to the reported yalue for the nylon 6,6 single ctystals but lower than we expected.

  • PDF

A Real-Space Band-Structure Calculation of 2D Photonic Crystals (2 차원 광결정의 실공간 밴드구조 계산)

  • Jun, Suk-Ky;Cho, Young-Sam;Im, Se-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1089-1093
    • /
    • 2003
  • The moving least square (MLS) basis is implemented for the real-space band-structure calculation of 2D photonic crystals. The value-periodic MLS shape function is thus used in order to represent the periodicity of crystal lattice. Any periodic function can properly be reproduced using this shape function. Matrix eigenequations, derived from the macroscopic Maxwell equations, are then solved to obtain photonic band structures. Through numerical examples of several lattice structures, the MLS-based method is proved to be a promising scheme for predicting band gaps of photonic crystals.

  • PDF

Epitaxial Growth of Three-Dimensional ZnO and GaN Light Emitting Crystals

  • Yang, Dong Won;Park, Won Il
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.2
    • /
    • pp.108-115
    • /
    • 2018
  • The increasing demands for three-dimensional (3D) electronic and optoelectronic devices have triggered interest in epitaxial growth of 3D semiconductor materials. However, most of the epitaxially-grown nano- and micro-structures available so far are limited to certain forms of crystal arrays, and the level of control is still very low. In this review, we describe our latest progress in 3D epitaxy of oxide and nitride semiconductor crystals. This paper covers issues ranging from (i) low-temperature solution-phase synthesis of a well-regulated array of ZnO single crystals to (ii) systematic control of the axial and lateral growth rate correlated to the diameter and interspacing of nanocrystals, as well as the concentration of additional ion additives. In addition, the critical aspects in the heteroepitaxial growth of GaN and InGaN multilayers on these ZnO nanocrystal templates are discussed to address its application to a 3D light emitting diode array.

Fabrication of Wafer-scale Polystyrene (2+1) Dimensional Photonic Crystal Multilayers Via the Layer-by-layer Scooping Transfer Technique

  • Do, Yeong-Rak;O, Jeong-Rok;Lee, Gyeong-Nam
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.11.1-11.1
    • /
    • 2011
  • We have developed a simple synthetic method for fabricating a wafer-scale colloidal crystal film of 2D crystals in a 1D stack based on a combination of two simple processes : the self-assembly of polystyrene (PS) nanospheres at the water-air interface and the layer-by-layer (LbL) scooping transfer technique. The main advantage of this approach is that it allows excellent control of the thickness (at a layer level) of the crystals and the formation of a vertical crack-free layer over a wafer-scale (4 inch). We investigate the optical and morphological properties of the PhC multilayers fabricated using various mono-sized colloidal crystals (250, 300, 350, 420, 580, 720, and 850 nm), and mixed binary colloidal crystals (300/350 and 250/350 nm).

  • PDF