• Title/Summary/Keyword: 2D Periodicity

Search Result 33, Processing Time 0.029 seconds

Numerical Study of Shadow Effect on Slab Deformation in Reheating Furnace (균열로의 그늘효과에 의한 슬랩변형에 관한 수치해석적 연구)

  • Noh, J.H.;Hwang, B.B.;Maeng, J.W.;Kim, J.D.
    • Transactions of Materials Processing
    • /
    • v.20 no.2
    • /
    • pp.132-139
    • /
    • 2011
  • Three dimensional simulations were performed for the deformation of a slab in a roller hearth type slab reheating furnace. The main objective of this study was to examine the deformation pattern of the slab due to the shadow effect, i.e., the temperature difference between the upper and lower slab surfaces, in particular, the variations of displacement and effective stress in the vertical direction. A commercially available FE code, ANSYS Workbench $12.1^{TM}$, was used in a fully coupled thermo-elasticity analysis. Several cases with different slab surface temperatures were selected for the simulations. For the sake of simplicity, the temperature environment inside the furnace was assumed to be homogeneous for the upper and lower faces of the slab. Two cases of with different slab width were selected as model geometry. The deformation patterns were computed and explained in terms of periodicity and symmetry. The results indicated that the shadow effect leads to a significant displacement in the vertical direction and, thereby, is one of the main reasons for the separation of the slab and its supports. These simulations also predicted that the deformation is more severe along the transverse direction than along the longitudinal direction.

BEHAVIOR OF POSITIVE SOLUTIONS OF A DIFFERENCE EQUATION

  • TOLLU, D.T.;YAZLIK, Y.;TASKARA, N.
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.3_4
    • /
    • pp.217-230
    • /
    • 2017
  • In this paper we deal with the difference equation $$y_{n+1}=\frac{ay_{n-1}}{by_ny_{n-1}+cy_{n-1}y_{n-2}+d}$$, $$n{\in}\mathbb{N}_0$$, where the coefficients a, b, c, d are positive real numbers and the initial conditions $y_{-2}$, $y_{-1}$, $y_0$ are nonnegative real numbers. Here, we investigate global asymptotic stability, periodicity, boundedness and oscillation of positive solutions of the above equation.

TIME/FREQUENCY ANALYSIS OF TERRESTRIAL IMPACT CRATER RECORDS

  • Chang Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.3
    • /
    • pp.199-208
    • /
    • 2006
  • The terrestrial impact cratering record recently has been examined in the time domain by Chang & Moon (2005). It was found that the ${\sim}26$ Myr periodicity in the impact cratering rate exists over the last ${\sim}250$ Myrs. Such a periodicity can be found regardless of the lower limit of the diameter up to D ${\sim}35km$. It immediately called pros and cons. The aim of this paper is two-fold: (1) to test if reported periodicities can be obtained with an independent method, (2) to see, as attempted earlier, if the phase is modulated. To achieve these goals we employ the time/frequency analysis and for the first time apply this method to the terrestrial impact cratering records. We have confirmed that without exceptions noticeable peaks appear around ${\sim}25$ Myr, corresponding to a frequency of ${\sim}0.04(Myr)^{-1}$. We also find periodicities in the data base including small impact craters, which are longer. Though the time/frequency analysis allows us to observe directly phase variations, we cannot find any indications of such changes. Instead, modes display slow variations of power in time. The time/frequency analysis shows a nonstationary behavior of the modes. The power can grow from just above the noise level and then decrease back to its initial level in a time of order of 10 Myrs.

A Real-Space Band-Structure Calculation of 2D Photonic Crystals (2 차원 광결정의 실공간 밴드구조 계산)

  • Jun, Suk-Ky;Cho, Young-Sam;Im, Se-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1089-1093
    • /
    • 2003
  • The moving least square (MLS) basis is implemented for the real-space band-structure calculation of 2D photonic crystals. The value-periodic MLS shape function is thus used in order to represent the periodicity of crystal lattice. Any periodic function can properly be reproduced using this shape function. Matrix eigenequations, derived from the macroscopic Maxwell equations, are then solved to obtain photonic band structures. Through numerical examples of several lattice structures, the MLS-based method is proved to be a promising scheme for predicting band gaps of photonic crystals.

  • PDF

Reconstruction of May Precipitation (317 Years: AD. 1682~1998) using Tree Rings of Pinus densiflora S. et. Z. in Western Sorak Mt. (설악산 서부 소나무의 연륜을 이용한 317년 (A.D. 1682~1998)간의 5월 강수량 복원)

  • 서정욱;박원규
    • The Korean Journal of Quaternary Research
    • /
    • v.16 no.1
    • /
    • pp.29-36
    • /
    • 2002
  • May rainfall (317 years: A.D. 1682~A.D. 1998) of western region of Sorak Mt. was reconstructed using a tree-ring chronology of Pinus densiflora 5. et 2. The reconstruction indicated that the 1690~1710년, 1745~1755 and 1847~1853 periods were the least May rainfalls, whereas 1715~1733 and 1835~1845 the greatest ones. The wet period of 1835~1845 was agreed with that found in Songni Mt., central Korea. This wet epoch seems to be widely spreaded in Korea. There were found no significant differences among the means of the 18th, 19th and 20th century's May rainfalls. The major periodicity of May rainfalls was 2~4 years.

  • PDF

Extraction of Runoff Component from Stage in Tidal River Using Wavelet Transform (Wavelet Transform을 이용한 감조하천 수위자료의 유출성분 추출)

  • Oh, Chang-Ryeol;Lee, Jin-Won;Jung, Sung-Won;Park, Sung-Chun
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.10
    • /
    • pp.793-800
    • /
    • 2007
  • This research applied to Wavelet transform that have soft resolution time and frequency area for stage of Hadong2 station in order to extract to discharge component by rainfall and tidal level component by tide. Approximation component(A6) of last level for wavelet decomposition displayed the biggest energy value 87.77%, and detail component(D3) energy value was 10.70% with periodicity of semidiurnal tide type(about 12 hours). Also skewness, kurtosis values of D3 have similar to tidal level of Yeosu. Approximation component(A6), Detail component(D6, D5) for Hadong2 stage was runoff component, and detail component(D4, D3, D2) was tide component according to effect of tide.

Some Notes on the Fourier Series of an Almost Periodic Weakly Stationary Process

  • You, Hi-Se
    • Journal of the Korean Statistical Society
    • /
    • v.3 no.1
    • /
    • pp.13-16
    • /
    • 1974
  • In my former paper [3] I defined an almost periodicity of weakly sationary random processes (a.p.w.s.p.) and presented some basic results of it. In this paper I shall present some notes on the Fourier series of an a.p.w.s.p., resulting from [3]. All the conditions at the introduction of [3] are assumed to hold without repreating them here. The essential facts are as follows : The weakly stationary process $X(t,\omega), t\in(-\infty,\infty), \omega\in\Omega$, defined on a probability space $(\Omega,a,P)$, has a spectral representation $$X(t,\omega)=\int_{-\infty}^{infty}{e^{it\lambda\xi}(d\lambda,\omega)},$$ where $\xi(\lambda)$ is a random measure. Then, the continuous covariance $\rho(\mu) = E(X(t+u) X(t))$ has the form $$\rho(u)=\int_{-\infty}^{infty}{e^{iu\lambda}F(d\lambda)},$$ $E$\mid$\xi(\lambda+0)-\xi(\lambda-0)$\mid$^2 = F(\lambda+0) - F(\lambda-0) \lambda\in(-\infty,\infty)$, assumimg that $\rho(u)$ is a uniformly almost periodic function.

  • PDF

TWO- AND THREE-DIMENSIONAL SUPERSONIC TURBULENT FLOW OVER A SINGLE CAVITY (단일 공동 주위의 2차원 및 3차원 초음속 난류 유동 분석)

  • Woo C. H.;Kim J. S.
    • Journal of computational fluids engineering
    • /
    • v.10 no.4 s.31
    • /
    • pp.51-58
    • /
    • 2005
  • The unsteady supersonic flow over two- and three-dimensional cavities has been analyzed by the integration of unsteady Reynolds-Averaged Navier-Stokes(RANS) with the k-$\omega$ turbulence model. The unsteady flow is characterized by the periodicity due to the mutual relation between the shear layer and the internal flow in the cavity. An explicit 4th order Runge-Kutta scheme and an upwind TVD scheme based on the flux vector split with the van Leer limiters are used for time and space discritizations, respectively. The cavity has a L/D ratio of 3 for two-dimensional case, and same L/D and W/D ratio of I for three-dimensional case. The Mach and Reynolds numbers are 1.5 and 450000 respectively. In the three-dimensional flow, the field is observed to oscillate in the 'shear layer mode' with a feedback mechanism that follows Rossiter's formula. In the two-dimensional simulation, the self-sustained oscillating flow has more violent fluctuation inside the cavity. The primary fluctuating frequencies of two- and three- dimensional flow agree very well with the 2nd mode of Rossiter's frequency. In the three-dimensional flow, the 1st mode of frequency could be seen.

A study on the Structure of Turbulent Diffusion Flame Behind the Hollowed Flame Holder (중앙분공형 보염기 후류에 안정된 난류확산화염의 구조에 관한 연구(I))

  • Kang, I.G.;Lee, W.S.;Kim, T.H.;Lee, D.H.
    • Journal of Power System Engineering
    • /
    • v.2 no.2
    • /
    • pp.13-19
    • /
    • 1998
  • The purpose of study is to investigate the flame stability and Structure of turbulent diffusion flame behind the hollowed flame holder, which is located on the waste gas coming out from the test furnace. Fluctuating temperature and ion current measurement and their statistical treatment were used for the purpose. Three types of flame were stabilized and each of which were changed by adequate equivalence ration. And we found that have no periodicity near reacting zone.

  • PDF

COMPARISON OF TWO- AND THREE-DIMENSIONAL SUPERSONIC TURBULENT FLOWS OVER A SINGLE CAVITY (단일 공동주위의 2차원과 3차원 초음속 유동 비교)

  • Woo C.H.;Kim J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.235-238
    • /
    • 2005
  • The unsteady supersonic flow over two- and three-Dimensional cavities has been analyzed by the integration of unsteady Reynolds-Averaged Navier-Stokes(RANS) with the k - w turbulence model. The unsteady flow is characterized by the periodicity due to the mutual relation between the shear layer and the internal flow in cavities. Numerical method is upwind TVD scheme based on the flux vector split with the Van Leer limiters, and time accuracy is used explicit 4th stage Runge-Kutta scheme. Cavity flows are Comparison of two- and three-dimensional. The cavity has a L/D ratio of 3 for two-dimensional case. and same L/D and W/D ratio is 1 for three-dimensional case. The Mach and Reynolds numbers are held constant at 1.5 and 450000 respectively. For the three-dimensional case, the flow field is observed to oscillate in the 'shear layer mode' with a feedback mechanism that follow Rossiter's formula. On the other hand, the self-sustained oscillating flow transitions to a 'wake mode' for the two-dimensional simulation, with more violent fluctuations inside the cavity.

  • PDF