DOI QR코드

DOI QR Code

TIME/FREQUENCY ANALYSIS OF TERRESTRIAL IMPACT CRATER RECORDS

  • Chang Heon-Young (Department of Astronomy and Atmospheric Sciences, Kyungpook National University)
  • Published : 2006.09.01

Abstract

The terrestrial impact cratering record recently has been examined in the time domain by Chang & Moon (2005). It was found that the ${\sim}26$ Myr periodicity in the impact cratering rate exists over the last ${\sim}250$ Myrs. Such a periodicity can be found regardless of the lower limit of the diameter up to D ${\sim}35km$. It immediately called pros and cons. The aim of this paper is two-fold: (1) to test if reported periodicities can be obtained with an independent method, (2) to see, as attempted earlier, if the phase is modulated. To achieve these goals we employ the time/frequency analysis and for the first time apply this method to the terrestrial impact cratering records. We have confirmed that without exceptions noticeable peaks appear around ${\sim}25$ Myr, corresponding to a frequency of ${\sim}0.04(Myr)^{-1}$. We also find periodicities in the data base including small impact craters, which are longer. Though the time/frequency analysis allows us to observe directly phase variations, we cannot find any indications of such changes. Instead, modes display slow variations of power in time. The time/frequency analysis shows a nonstationary behavior of the modes. The power can grow from just above the noise level and then decrease back to its initial level in a time of order of 10 Myrs.

Keywords

References

  1. Alvarez, W. & Muller, R. A. 1984, Nature, 308, 718 https://doi.org/10.1038/308718a0
  2. Bailey, M. E., Wilkinson, D. A., & Wolfendale, A. W. 1987, MNRAS, 227, 863 https://doi.org/10.1093/mnras/227.4.863
  3. Bracewell, R. 1965, The Fourier Transform and its Application (New York: McGraw-Hill)
  4. Chang, H.-Y. & Moon, H.-K. 2005, PASJ, 57,487 https://doi.org/10.1093/pasj/57.3.487
  5. Clube, S. V. M. & Napier, W. M. 1984a, Nature, 311, 635 https://doi.org/10.1038/311635a0
  6. Clube, S. V. M. & Napier, W. M. 1984b, MNRAS, 208, 575
  7. Clube, S. V. M. & Napier, W. M. 1996, QJRAS, 37, 617
  8. Davis, M., Hut, P., & Muller, R. A. 1984, Nature, 308, 715 https://doi.org/10.1038/308715a0
  9. Grieve, R. A. F. 1987, Annual Reviews of Earth and Planetary Sciences, 15 ,245 https://doi.org/10.1146/annurev.ea.15.050187.001333
  10. Grieve, R. A. F. 1991, Meteoritics, 26, 175 https://doi.org/10.1111/j.1945-5100.1991.tb01038.x
  11. Grieve, R. A. F. & Shoemaker, E. M. 1994, in Hazards due to Comets and Asteroids, ed. T. Gehrels, M. S. Mathews, & A. Schumann (Tucson: University of Arizona), p.417
  12. Grossmann, A. & Morlet, J. 1984, SIAM J. Math. Anal., 15, 723 https://doi.org/10.1137/0515056
  13. Holmberg, J. & Flynn, C. 2000, MNRAS, 313, 209 https://doi.org/10.1046/j.1365-8711.2000.02905.x
  14. Jansa, L. F., Aubry, M. P., & Gradstein, F. M. 1990, in Global Catastrophes in Earth History, eds. V. L. Sharpton & P. D. Ward (Boulder: Geological Society of America), p.223
  15. Jetsu, L. 1997, A&A, 321, L33
  16. Jetsu, L. & Pelt, J. 2000, A&A, 353, 409
  17. Matsumoto, M. & Kubotani, H. 1996, MNRAS, 282, 1407 https://doi.org/10.1093/mnras/282.4.1407
  18. Moon, H.-K., Min, B.-H., Fletcher, A. B., Kim, B.-G., Han, W.- Y, Chun, M.- Y, Jeon, Y.-B., & Lee, W.-B. 2001, JA&SS, 18, 191
  19. Napier, W. M. 2006, MNRAS, 366, 977 https://doi.org/10.1111/j.1365-2966.2005.09851.x
  20. Nurmi, P., Valtonen, M. J., & Zheng, J. Q. 2001, MNRAS, 327, 1367 https://doi.org/10.1046/j.1365-8711.2001.04854.x
  21. Rampino, M. R. & Stothers, R. B. 1984a, Science, 226, 1427 https://doi.org/10.1126/science.226.4681.1427
  22. Rampino, M. R. & Stothers, R. B. 1984b, Nature, 308, 709 https://doi.org/10.1038/308709a0
  23. Rampino, M. R. & Caldeira, K. 1992, Celestial Mechanics and Dynamical Astronomy, 54, 143 https://doi.org/10.1007/BF00049549
  24. Raup, D. M. & Sepkoski, J. J. 1984, Proc. Nat. Acad. Sci. U.S.A., 81, 801
  25. Stothers, R. B. 1992, Earth, Moon and Planets, 58, 145 https://doi.org/10.1007/BF00054651
  26. Stothers, R. B. 1998, MNRAS, 300,1098 https://doi.org/10.1046/j.1365-8711.1998.02001.x
  27. Stothers, R. B. 2006, MNRAS, 365, 178 https://doi.org/10.1111/j.1365-2966.2005.09720.x
  28. Tremaine, S. 1986, in the Galaxy and the Solar System, eds. R. Smoluchowski, J. N. Bahcall, & M. S. Matthews (Arizona: University of Arizona Press), p.409
  29. van den Bergh, S. 1994, PASP, 106, 689 https://doi.org/10.1086/133431
  30. Weissman, P. 1985, Nature, 316, 572
  31. Weissman, P. 1990, Sky & Telescope, 79, 266
  32. Whitmire, D. E & Jackson, A. A. 1984, Nature, 308, 713 https://doi.org/10.1038/308713a0
  33. Yabushita, S. 1991. MNRAS. 250. 481 https://doi.org/10.1093/mnras/250.3.481
  34. Yabushita, S. 1992, Earth, Moon and Planets, 58, 57 https://doi.org/10.1007/BF00058073
  35. Yabushita, S. 1996, MNRAS, 279, 727 https://doi.org/10.1093/mnras/279.3.727
  36. Yabushita, S. 2002. MNRAS. 334. 369 https://doi.org/10.1046/j.1365-8711.2002.05522.x

Cited by

  1. Latitudinal Distribution of Sunspots Revisited vol.28, pp.1, 2011, https://doi.org/10.5140/JASS.2011.28.1.001