• Title/Summary/Keyword: 2015 개정 과학과 교육 과정

Search Result 226, Processing Time 0.026 seconds

Analysis of the Nature of Science (NOS) in Integrated Science Textbooks of the 2015 Revised Curriculum (2015 개정 교육과정 통합과학 교과서의 과학의 본성(NOS) 분석)

  • Jeon, Young Been;Lee, Young Hee
    • Journal of Science Education
    • /
    • v.44 no.3
    • /
    • pp.273-288
    • /
    • 2020
  • This study aims to investigate the presentation of the Nature of Science (NOS) in integrated science textbooks of the 2015 revised curriculum. The five integrated science textbooks published by the revised 2015 curriculum were analyzed with the conceptual framework of the four themes of the Nature of Science (NOS) (Lee, 2013) based on scientific literacy. The four themes of the NOS are 1. nature of scientific knowledge (theme I), 2. nature of scientific inquiry (theme II), 3. nature of scientific thinking (theme III), and 4. nature of interactions among science, technology, and society. The reliability of the textbooks analysis was measured between two coders by the Cohen's kappa and resulted in between 0,83 and 0,96, which means the results of analysis was consistent and reliable. The findings were as follows. First, overall theme II, nature of scientific inquiry emphasized on the integrated science textbooks of the 2015 revised curriculum by devoting the contents over 40 % in the all five publishing companies' textbooks. Second, while the theme II, nature of scientific inquiry was emphasized on the textbooks regardless of the publishing companies, other themes of the NOS were emphasized in different portions by the publishing companies. Thus, the focus among other three themes of the NOS was presented differently by the publishing companies except that in theme II, nature of scientific inquiry was most emphasized on integrated science textbooks. Third, the presentation of the NOS was identified similarly across the topics of integrated science textbooks except on topic 4. Environment and Energy. The theme IV, nature of interactions among science, technology, and society was emphasized reasonably only in the topic of Environment and Energy of the textbooks. Finally, the presentation of the NOS in the integrated science textbooks of the 2015 revised curriculum were more balanced among the four themes of the NOS with focus on the scientific inquiry compared to the previous curriculum textbooks.

Analysis of Elements of Character Education in the Middle School Science Curriculum (중학교 과학과 교육과정에서 나타난 인성교육 요소 분석)

  • An, Youngju;Kang, Eugene;Kwon, Jeongin;Park, Jongseok;Son, Jeongwoo;Nam, Jeonghee
    • Journal of Science Education
    • /
    • v.41 no.2
    • /
    • pp.167-178
    • /
    • 2017
  • It has been suggested that character education, taught only in ethics and social science, should be integrated into other subjects including science education. In terms of inquiry and the nature of science, science education is related to character education, which is emphasized by SSI (Socioscientific Issue) education. Followed by necessity of character education, the Character Education Promotion Act was established in 2015. To investigate what and how character education is conducting in schools, analysis of curriculums and textbooks is needed in terms of elements underlined in the Character Education Promotion Act. For this purpose, this research analyzed general remarks and science sections in the 2009 revised and the 2015 revised curriculums and science textbooks based on the 2009 revised curriculum with regard to essential virtues in the Character Education Promotion Act. Results showed that parts of essential virtues were included in both curriculums, of which elements were inconsistent with those of science textbooks. Curriculums and textbooks reflecting whole elements faithfully need to be developed.

Changes and Issues Regarding the Elementary Science Curriculum: Focusing on Physics (초등 과학 교육과정의 변화와 쟁점 - 물리 영역을 중심으로 -)

  • Byun, Taejin
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.2
    • /
    • pp.217-235
    • /
    • 2022
  • This study aimed to analyze the changes in the physics curriculum of elementary schools over the past years and to discuss the issues faced by the science curriculum for elementary education prior to the next curriculum revision. We analyzed changes in the elements of the contents from the 7th curriculum to the 2015 revised curriculum and reviewed studies conducted after the revision in 2015. Additionally, three professors majoring in physics education discussed the results of the curriculum analysis. The result indicates that content of the physics curriculum for elementary education was generally reduced after the 7th curriculum. Specifically, difficult concepts were omitted or designated to a higher school level. Concerns related to the science curriculum pertain to the content adequacy and difficulty of the current curriculum, its relationship with mathematics, connection between the Nuri curriculum and the integrated curriculum for the 1st and 2nd grades, and the achievement standard predicate problem.

Middle School Science Teachers' Perceptions of Implementation and Challenges on Process-Based Assessment Emphasized in the 2015 Revised Curriculum (2015 개정 교육과정에 따른 중학교 과학교사들의 과정중심평가 실행 및 어려움에 대한 인식 탐색)

  • Lee, Hyunju;Baek, Jongmin;Kwak, Youngsun
    • Journal of Science Education
    • /
    • v.44 no.2
    • /
    • pp.133-144
    • /
    • 2020
  • As a part of the second-year monitoring study on the implementation of the 2015 revised science curriculum in middle schools, this study focuses more on examining middle school science teachers' perceptions on the process-based assessment (PBA). A total of 105 middle school science teachers (44 teachers from science leading schools, 61 teachers from ordinary schools) responded to the survey questionnaire, and 16 teachers participated in interviews. The results include teachers' perceptions on the changes in their teaching and assessment methods, some challenges of implementing PBA, and educational implications of PBA. Survey results indicate that the teachers perceived themselves using more PBA methods after the 2015 revised science curriculum was launched. The teachers in science-leading schools present statistically higher average scores to the items on the PBA utilization than the ones in ordinary schools. However, the teachers felt confused in conceptually differentiating PBA from prior performance-based assessment. They also experienced some conflicts when implementing PBA under the achievement-oriented school atmospheres. In addition, they often faced difficulties in securing objectivity and reliability of PBA and felt the burden of evaluating individual students. This study suggests the necessity of giving more authority and trust to science teachers regarding PBA, constructing more supportive environment to cultivate teacher competency as evaluation experts, and the need to reduce task burden. However, some teachers who actively implemented PBA express some level of satisfaction as observing students' positive reaction to PBA.

Analysis of Application Status of Process-Centered Assessment in Elementary School Science Classes (초등학교 과학 수업에서 과정중심평가 적용 실태 분석)

  • Kwak, Youngjun;Ha, Ji-hoon
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.5
    • /
    • pp.463-471
    • /
    • 2020
  • The purpose of this study is to analyze application status about the process-centered assessment in elementary school science classes. For this purpose, a survey was conducted with 133 teachers and 2,089 students in elementary schools, and in-depth interviews with eight teachers were conducted. Elementary school teachers had a positive attitude toward the adoption of the process-centered assessment of 2015 revised science curriculum. After applying 2015 revised science curriculum, teachers used more performance assessments and less traditional ones in science classes. Elementary school students recognized that they receive feedbacks from their teachers more often with the implementation of the 2015 revised science curriculum. Through in-depth interviews, it was possible to confirm the difficulty of applying the process-centered assessment of elementary school teachers, such as lack of understanding of process-centered assessment and lack of time for its application. Based on the results of the study, the necessity for improving teacher understanding of process-centered assessment and the need to disseminate process-centered assessment materials are suggested.

Ways to Improve In-Service Science Teachers' Expertise with the Introduction of 'Integrated Science' in the 2015 Revised Curriculum (2015 개정 교육과정의 '통합과학' 도입에 따른 중등 과학과 현직교사 역량 제고 방안)

  • Kwak, Youngsun;Lee, Jaebong;Lee, Yangrak
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.2
    • /
    • pp.263-271
    • /
    • 2017
  • Teacher reeducation is required to be comfortable with the 'Integrated science' subject as introduced in the 2015 revised curriculum. In this research, we designed in-service teacher training programs according to the types of secondary school science teacher's certificates, and developed ways to improve in-service science teachers' competencies. Through Delphi surveys with 22 science education experts, we investigated the features of the 2015 revised 'Integrated science' curriculum in light of its characteristics, purposes, contents system, contents, and so on, and explored teachers' competencies to teach the subject. Based on the analysis of the features of each type of secondary school science teachers' certification and required teacher competencies for teaching 'Integrated science', we developed three types of teacher training programs: in-service training courses for understanding the 2015 revised 'Integrated science' (Type A), in-service training courses for 'Integrated science' (Type B), and in-service teacher training certificate program for 'Integrated science' (Type C). For each teacher training program, we suggested the target of the training program in light of teacher certificates, operation systems, and ways to organize the program. In addition, we also suggested ways to improve 'Integrated science' teacher education programs for pre-service as well as in-service teachers, and examined ways to improve educational requirements for qualification in 'Integrated science' teaching based on the opinions of experts. Discussed in the conclusion are ways to design in-service teacher training programs for 'Integrated science' teaching and ways to improve 'Integrated science' teacher training.

Critical Review of 'Skills' in the 2015 Revised Science National Curriculum (2015 개정 과학과 교육과정의 '기능'에 대한 비판적 검토)

  • Kwon, Munho;Park, Jongseok
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.2
    • /
    • pp.151-161
    • /
    • 2020
  • The 'core concepts', 'generalized knowledge', and 'skills' are newly introduced in the 'contents system' of the 2015 revised national curriculum, and the 'skills' are not clearly defined in the science curriculum. There is a problem of uniformly presenting 'skills' in all 'areas' of science subjects. In this study, it was intended that the teachers' clear understanding of the 'skills' and the philosophy of the revised curriculum would be applied to the school classrooms through the critical problem recognition and consideration of 'skills' newly introduced in the 'contents system' of the 2105 revised science curriculum. First, we reviewed 'science and engineering practice' in the NGSS, which was a reference to the introduction to the curriculum, and identified the problems of 'skills' presented in the science curriculum. It also analyzed critically by comparing 'skills' and 'practices' with other subjects and previous curriculum. Based on this critical analysis, we suggested the following. First, introduce 'skills' items that can implement scientific key competencies, and clearly define each item. Second, present 'skills' that are appropriate according to the subject, 'area', 'core concept', and grade(group) and describe in detail how to apply 'skills' and, third, present 'skills' directly in 'achievement standards'.

A Comparative Study of Physics Textbooks based on 2015 Revised National Curriculum and IB DP: Focused on the 'Relativity' Unit (2015 개정 교육과정과 IB DP에 따른 물리학 교과서 비교 연구: '상대성 이론' 단원을 중심으로)

  • Kwon, Munho
    • Journal of Science Education
    • /
    • v.44 no.1
    • /
    • pp.15-37
    • /
    • 2020
  • Unlike Korean science curriculum's continued push for "relevance of contents" to reduce the burden of learning on students, IB DP (International Baccalaureate Diploma Programme) is chosen in many countries and the number of IB world schools continues to grow, although it contains not only a large amount of learning but a substantial amount of content that requires quantitative calculations. Through this study, we suggest implications for Korean science curriculum and textbook, by comparing the constructions of chapters, the achievement standards, the learning contents, and the formulas of physics textbook, focusing on the 'relativity' unit of the 2015 revised national curriculum and IB DP, and by analyzing the questions of college scholastic ability test (CSAT) and external assessment (EA).

The Relationship Analysis of the Korean Science Curriculum with the Chemistry Domains of the 8th Grade TIMSS 2019 (TIMSS 2019의 8학년 화학 영역과 우리나라 과학 교육과정의 비교 분석)

  • Kim, Hyun-Kyung
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.6
    • /
    • pp.371-378
    • /
    • 2020
  • The purpose of this study is to analyze the relationship between the eight topics in TIMSS 2019 8th grade chemistry domains and the Korea 2009 Revised Science Curriculum and the 2015 Revised Science Curriculum. For this purpose, four elementary and four secondary teachers participated in physics, chemistry, biology and earth science majors, and two science education experts participated in analyzing in which grades the content elements of the TIMSS 2019 science framework are covered in the Korean science curriculum. The study also analyzed whether the content of the Korean science curriculum matches the 246 items of 8th grade in the TIMSS 2019 assessment and reflects in which grades the eight topics are covered. The results of this study are as follows. First, among the TIMSS 2019 evaluation topics, topics not covered at all in the Korean middle school curriculum were periodic table, matter and energy in chemical reactions, the role of electrons in chemical bonds. Second, the topic of "the periodic table as an organizing principle for the known elements" needs to be introduced in the Korean middle school curriculum, and topics such as "familiar exothermic and endothermic reactions" and "factors affecting the reaction rates" need to be discussed in consideration of the flow of international curricula. Third, the next science curriculum should be structured so that the sequence of chemistry contents and scope, especially core concepts to be included in the elementary, secondary, and higher education curriculum is linked to continuity.

Exploration of High School Science Teachers' Perceptions on Instruction and Assessment of Science Elective Courses in the 2015 Revised Curriculum (2015개정 과학과 선택과목 수업 및 평가에 대한 교사들의 인식 탐색)

  • Kwak, Youngsun;Lee, Il
    • Journal of The Korean Association For Science Education
    • /
    • v.41 no.3
    • /
    • pp.183-192
    • /
    • 2021
  • As part of the second-year monitoring study on the implementation of the 2015 revised science curriculum, this study investigated high school science teachers' perception and realization of instruction and assessment of elective courses to derive measures to settle and improve the science curriculum. A total of 244 high school science teachers responded to the survey questionnaire, and 9 teachers participated in interviews. In survey results, science teachers are contemplating ways to increase students' science competencies and their participation in classes, but still, lecture-oriented classes are most often used in their teaching. Regarding assessment, teachers responded that there were positive changes in all of the questions related to process-based assessment (PBA). Regarding the difficulty of managing science elective courses, teachers most often selected increased numbers of subjects being covered, overload of work, and the burden of restructuring classes considering various ways of teaching and assessment. Through in-depth interviews, teachers argued the difficulty for Science I courses to emphasize student participatory classes compared to integrated science, and the difficulty to implement student participatory classes for Science II courses, which are mainly placed in the third grade. Teachers also argue that it is necessary to secure time to implement PBA in science elective courses, and that there is no need to implement PBA for the science experiment since there are no tests on the SAT. Based on the results of the study, discussed in the conclusion are support plans for the settlement of PBA in elective courses, and the need for in-depth analysis of the direction and cause of student participatory classes and PBA at the school.