• Title/Summary/Keyword: 2.4GHZ 대역 응용

Search Result 118, Processing Time 0.027 seconds

Design of Triple-band Triple Dipole Quasi-Yagi Antenna for WLAN and WiMAX Applications (무선 랜과 WiMAX 응용을 위한 삼중 대역 삼중 다이폴 준-야기 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.1
    • /
    • pp.29-34
    • /
    • 2022
  • In this paper, the design of a triple dipole quasi-yagi antenna operating in the 2.45 GHz and 5 GHz wireless LAN frequency bands and the 3.5 GHz WiMAX frequency band was studied. The proposed quasi-Yagi antenna consists of three dipoles connected in series with a V-shaped ground plane. The longest half-bow-tie-shaped dipole resonates in the 2.45 GHz band, whereas the medium-length dipole resonates at 3.5 GHz. The shortest dipole resonates in the 5 GHz band. By adjusting the length and width of the dipoles and the spacings between the dipoles, a triple-band directional antenna operating in the 2.45 GHz, 3.5 GHz, and 5 GHz bands are designed, and fabricated on an FR4 substrate with a size of 45 mm × 55 mm. It was confirmed that the fabricated antenna operates in the designed triple bands of 2.32-2.57 GHz, 3.26-3.69 GHz, and 4.50-6.56 GHz for a voltage standing wave ratio less than 2. Gain is maintained above 3 dBi in the three bands.

Design of CMOS LC VCO with Linearized Gain for 5.8GHz/5.2GHz/2.4GHz WLAN Applications (5.8GHz/5.2GHz/2.4GHz 무선 랜 응용을 위한 선형 이득 CMOS LC VCO의 설계)

  • Ahn Tae-Won;Moon Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.6 s.336
    • /
    • pp.59-66
    • /
    • 2005
  • CMOS LC VCO for tri-bind wireless LAN applications was designed in 1.8V 0.18$\mu$m CMOS process. PMOS transistors were chosen for VCO core to reduce flicker noise. The possible operation was verified for 5.8GHz band (5.725$\~$5.825GHz), 5.2GHz band (5.150$\~$5.325GHz), and 2.4GHz band (2.412$\~$2.484GHz) using the switchable L-C resonators. To linearize its frequency-voltage gain (Kvco), optimized multiple MOS varactor biasing technique was used for capacitance linearization and PLL stability improvement. VCO core consumed 2mA current and $570{\mu}m{\times}600{\mu}m$ die area. The phase noise was lower than -110dBc/Hz at 1MHz offset for tri-band frequencies.

Design of Dual-band Monopole Antenna for WLAN and UWB Applications (WLAN 및 UWB 응용을 위한 이중 대역 모노폴 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig;Park, Jin-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.4
    • /
    • pp.811-817
    • /
    • 2014
  • In this paper, a design method for a dual-band monopole antenna operating in the bands of 2.45 GHz WLAN and UWB is studied. A monopole antenna operating in UWB band is first designed, and a slot is inserted on the monopole to operate in 2.45 GHz WLAN band. The optimized dual-band monopole antenna is fabricated on an FR4 substrate, and the experimental results show that the antenna has a dual-band characterisitc in WLAN and UWB bands with the frequency bands of 2.35-2.50 GHz and 2.99-11.82 GHz for a VSWR < 2. Measured gain is 1 dBi at 2.45 GHz, and ranges 1.5-4.6 dBi in the frequency band of 3.1-10.6 GHz.

Analysis Microstrip Patch Antenna of MIMO Structure (MIMO 구조의 마이크로스트립 패치 안테나 분석)

  • Kim, Sun-Woong;Park, Jung-Jin;Choi, Dong-You
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.5
    • /
    • pp.944-949
    • /
    • 2015
  • This study proposed a patch antenna with a MIMO structure which is applicable for wireless communication equipment by combining a single patch antenna with a multi port. The proposed MIMO patch antenna was designed through the TRF-45 substrate with a relative permittivity of 4.5, loss tangent equal to 0.0035 and dielectric high of 1.6 mm, and the center frequency of the antenna was 2.45 GHz in the ISM (Industrial Scientific and Medical) band. The proposed MIMO patch antenna had a 500 MHz bandwidth from 2.16 ~ 2.66 GHz and 24.1% fractional bandwidth. The return loss and VSWR were -62.05 dB, 1.01 at the ISM bandwidth of 2.45 GHz. The Wibro band of 2.3 GHz was -17.43 dB, 1.33, the WiFi band of 2.4 GHz was -31.89 dB, 1.05, and the WiMax band of 2.5 GHz was -36.47 dB, 1.03. The radiation patterns included in the bandwidth were directional, and the WiBro band of 2.3 GHzhad a gain of 4.22 dBi, the WiFi band of 2.4 GHz had a gain of 4.12 dBi, the ISM band of 2.45 GHz had a gain of 4.06dBi, and the WiMax band of 2.5 GHz had a gain of 3.9 6dBi.

Design and Fabrication of a Broadband RF Module for 2.4GHz Band Applications (2.4GHz 대역에서의 응용을 위한 광대역 RF모듈 설계 및 제작)

  • Yang Doo-Yeong;Kang Bong-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.4
    • /
    • pp.1-10
    • /
    • 2006
  • In this paper, a broadband RF module is designed and tested for 2.4GHz band applications. The RF module is composed of a low noise amplifier (LNA) with a three stage amplifier, a single ended gate mixer, matching circuits, a hairpin line band pass filter and a Chebyshev low pass filter to convert the radio frequency (RF) into the intermediate frequency (IF). The LNA has a high gain and stability, and the single ended gate mixer has a high conversion gain and wide dynamic range. In the analysis of the broadband RF module, the composite harmonic balance technique is used to analyze the operating characteristics of an RF module circuit. The RF module has a 55.2dB conversion gain with a 1.54dB low noise figure, $-120{\sim}-60dBm$ wide RF power dynamic range, -60dBm low harmonic spectrum and a good isolation factor among the RF, IF, and local oscillator (LO) ports.

  • PDF

Design of Dual-Band Patch Antenna Using Asymmetric Inset Feeding (비대칭 인셋 급전을 사용한 이중 대역 패치 안테나 설계)

  • Dong-Kook Park
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.405-410
    • /
    • 2023
  • This paper presents a novel method of implementing a dual-band antenna using a square patch with an inset feed structure. The proposed method is to simply design a dual-band antenna using an asymmetric inset structure with different lengths of slots dug into the patch for inset feeding. To verify the proposed method, a dual-band inset patch antenna supporting 1.57 GHz GPS and 2.4 GHz WiFi bands was designed and manufactured on a 1 mm thick FR4 substrate. From measurement, it was confirmed that the frequency bands of the antenna that satisfy a return loss of -10dB or less are 1.55~1.57GHz and 2.41~2.45GHz, which has dual-band characteristics. Using the proposed method, it is possible to simply implement a dual-band antenna using inset feeding, and it is expected to be utilized in a variety of application fields.

A Compact CPW-fed Antenna for 2.4 GHz WLAN applications (2.4 GHz 무선랜 대역용 CPW 소형 안테나)

  • Choi, In-Tae;Shin, Ho-Sub
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.11
    • /
    • pp.1245-1250
    • /
    • 2015
  • In this paper, a compact CPW-fed antenna for 2.45 GHz band WLAN applications is presented. The proposed antenna which has a geometry of folded stub and slot is fabricated into an inexpensive FR-4 substrate that has a dielectric constant of 4.2 and a thickness of 1.0 mm with optimized parameters obtained by simulation, and then measured. From measured result, we confirmed available operation as antenna for WLAN applications by obtaining the return loss level of < -10 dB in the frequency band of 2.4-2.484 GHz.

Design and fAbrication of Triple Band WLAN Antenna Applicable to Wi-Fi 6E Band with DGS (DGS를 갖는 Wi-Fi 6E 대역을 위한 삼중대역 WLAN 안테나 설계 및 제작)

  • Sang-Wook Park;Gi-Young Byun;Joong-Han Yoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.345-354
    • /
    • 2024
  • In this paper, we propose a triple band WLAN antenna for Wi-Fi 6E band with DGS. The proposed antenna has the characteristics required frequency band and bandwidth by considering the interconnection of two strip lines and three areas on the ground place. The total substrate size is 31 mm (W) × 50 mm (L), thickness (h) 1.6 mm, and the dielectric constant is 4.4, which is made of 22 mm (W6 + W4 + W5) × 43mm (L1 + L2 + L3 + L5) antenna size on the FR-4 substrate. From the fabrication and measurement results, bandwidths of 340 MHz (1.465 to 1.805 GHz) for 900 MHz band, 480 MHz (2.155 to 2.635 GHz) for 2.4 GHz band and 1950 MHz (4.975 to 6.925 GHz) for 5.0/6.0 GHz band were obtained on the basis of -10 dB. Also, gain and radiation pattern characteristics are measured and shown in the frequency triple band as required.

Design of a Dual-Band Switch with 2.4[GHz]/5.8[GHz] (2.4[GHz]/5.8[GHz] 이중대역 SPDT 스위치 설계)

  • Roh, Hee-Jung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.8
    • /
    • pp.52-58
    • /
    • 2008
  • Ths paper describes the Dual-band switch which was proposed new structure that could improved the specification of broadband and designed by the optimized structure through simulation. The Dual-band switch with 2.4[GHz]/5.8[GHz] that can apply to 802.11a/b/g system that is commercialized present was studied to get a new structure with higher power, high isolation. The transmitter of switch was designed to operate a parallel switching element with stack structure of two FET. The receiver designed to have asymmetry structure that insert series FET in addition to basic serial/parallel FET. SPDT(Single Pole Double Throw) Tx/Rx FET switch is a device that can do switching from a port of input to two port of output. The fabricated SPDT switch has the characteristic of insertion loss of a below -3[dB] form DC to 6[GHz] and the isolation of a below -30D[dB](Rx mode).

A Ku-band 3 Watt PHEMT MMIC Power Amplifier for satellite communication applications (위성 통신 응용을 위한 Ku-대역 3 Watt PHEMT MMIC 전력 증폭기)

  • Uhm, Won-Young;Lim, Byeong-Ok;Kim, Sung-Chan
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1093-1097
    • /
    • 2020
  • This work describes the design and characterization of a Ku-band monolithic microwave integrated circuit (MMIC) power amplifier (PA) for satellite communication applications. The device technology used relies on 0.25 ㎛ gate length gallium arsenide (GaAs) pseudomorphic high electron mobility transistor (PHEMT) of wireless information networking (WIN) semiconductor foundry. The developed Ku-band PHEMT MMIC power amplifier has a small-signal gain of 22.2~23.1 dB and saturated output power of 34.8~35.4 dBm over the entire band of 13.75 to 14.5 GHz. Maximum saturated output power is a 35.4 dBm (3.47 W) at 13.75 GHz. Its power added efficiency (PAE) is 30.6~37.83% and the chip dimensions are 4.4 mm×1.9 mm. The developed 3 W PHEMT MMIC power amplifier is expected to be applied in a variety of Ku-band satellite communication applications.